Back to Search Start Over

NVD-BM-mediated genetic biosensor triggers accumulation of 7-dehydrocholesterol and inhibits melanoma via Akt1/NF-ĸB signaling.

Authors :
Liu J
Cao L
Qu JZ
Chen TT
Su ZJ
Hu YL
Wang Y
Yao MD
Xiao WH
Li C
Li B
Yuan YJ
Source :
Aging [Aging (Albany NY)] 2020 Jul 25; Vol. 12 (14), pp. 15021-15036. Date of Electronic Publication: 2020 Jul 25.
Publication Year :
2020

Abstract

Aberrant activation of the cholesterol biosynthesis supports tumor cell growth. In recent years, significant progress has been made by targeting rate-limiting enzymes in cholesterol biosynthesis pathways to prevent carcinogenesis. However, precise mechanisms behind cholesterol degradation in cancer cells have not been comprehensively investigated. Here, we report that codon optimization of the orthologous cholesterol 7-desaturase, NVD-BM from Bombyx mori , significantly slowed melanoma cell proliferation and migration, and inhibited cancer cell engraftment in nude mice, by converting cholesterol to toxic 7-dehydrocholesterol. Based on these observations, we established a synthetic genetic circuit to induce melanoma cell regression by sensing tumor specific signals in melanoma cells. The dual-input signals, RELA proto-oncogene (RELA) and signal transducer and activator of transcription 1 (STAT1), activated NVD-BM expression and repressed melanoma cell proliferation and migration. Mechanically, we observed that NVD-BM decreased Akt1-ser473 phosphorylation and inhibited cytoplasmic RELA translocation. Taken together, NVD-BM was identified as a tumor suppressor in malignant melanoma, and we established a dual-input biosensor to promote cancer cell regression, via Akt1/NF-κB signaling. Our results demonstrate the potential therapeutic effects of cholesterol 7-desaturase in melanoma metabolism, and provides insights for genetic circuits targeting 7-dehydrocholesterol accumulation in tumors.

Details

Language :
English
ISSN :
1945-4589
Volume :
12
Issue :
14
Database :
MEDLINE
Journal :
Aging
Publication Type :
Academic Journal
Accession number :
32712598
Full Text :
https://doi.org/10.18632/aging.103562