Back to Search Start Over

Effects of bacterial lipopolysaccharides on platelet function: inhibition of weak platelet activation.

Authors :
Martyanov AA
Maiorov AS
Filkova AA
Ryabykh AA
Svidelskaya GS
Artemenko EO
Gambaryan SP
Panteleev MA
Sveshnikova AN
Source :
Scientific reports [Sci Rep] 2020 Jul 23; Vol. 10 (1), pp. 12296. Date of Electronic Publication: 2020 Jul 23.
Publication Year :
2020

Abstract

Platelets are anucleate blood cells with reported roles in hemostasis and immune responses, which possess a functional receptor for bacterial lipopolysaccharides (LPSs), the well-known inducers of inflammation. However, LPSs effects on platelets are contradictory. Here we aim to investigate mechanisms of platelet functioning in the presence of LPS and to find the cause of the discrepancy in the previously published data. Cell activity was analyzed by flow cytometry, western blotting, and aggregometry. Thrombus growth was assessed by fluorescent microscopy. LPS' activity was checked by their capability to induce PMN activation. However, LPSs did not substantially affect either thrombus growth in flow chambers, irreversible platelet aggregation, or platelet responses to strong activation. Platelet aggregation in response to 1 μM of ADP was significantly inhibited by LPSs. Flow cytometry analysis revealed that platelet activation responses to weak stimulation were also diminished by LPSs, while VASP phosphorylation was weakly increased. Additionally, LPSs were capable of inhibition of ADP-induced P2-receptor desensitization. Incubation of platelets with a pan-PDE inhibitor IBMX significantly enhanced the LPSs-induced platelet inhibition, implying cAMP/cGMP dependent mechanism. The discrepancy in the previously published data could be explained by LPS-induced weak inhibition of platelet activation and the prevention of platelet desensitization.

Details

Language :
English
ISSN :
2045-2322
Volume :
10
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
32704001
Full Text :
https://doi.org/10.1038/s41598-020-69173-x