Back to Search Start Over

Supercritical Fluid Extraction of Celery and Parsley Fruit-Chemical Composition and Antibacterial Activity.

Authors :
Misic D
Tadic V
Korzeniowska M
Nisavic J
Aksentijevic K
Kuzmanovic J
Zizovic I
Source :
Molecules (Basel, Switzerland) [Molecules] 2020 Jul 10; Vol. 25 (14). Date of Electronic Publication: 2020 Jul 10.
Publication Year :
2020

Abstract

Supercritical fluid extraction as an environmentally friendly technology was applied to isolate biologically active extracts from celery and parsley fruits for potential applications in the food industry. The extractions were performed under mild temperature conditions of 39.85 °C and at pressures of 10 and 30 MPa. The extracts were analyzed regarding their chemical composition, antibacterial activity, and cytotoxic effect. Sedanolide was the dominant component of the celery fruit extracts, comprising more than 70% of the obtained fraction, while the content of apiole in the parsley fruit SC CO <subscript>2</subscript> extracts exceeded 85%. The celery fruit extracts showed strong and moderately strong antibacterial activity against tested Staphylococcus aureus , Bacillus (B.) cereus, B. subtilis, B. circulans , Listeria ( L .) greyi, L. seeligeri and L. welshimeri , with minimal inhibitory concentration (MIC) values between 160 and 640 µg/mL, and weak activity against the selected Salmonella isolates with a MIC of 2560 µg/mL. The parsley extract obtained at 10 MPa showed strong and moderately strong antibacterial effects against Bacillus strains with obtained MICs of 160-640 µg/mL, and weak activity against Staphylococcus, Listeria , and Salmonella with a MIC of 2560 µg/mL. Cytotoxicity investigation showed that the extracts with proven antibacterial activity had no cytotoxic effect on rabbit kidney cells at concentrations of up to 640 µg/mL.<br />Competing Interests: The authors declare no conflict of interest.

Details

Language :
English
ISSN :
1420-3049
Volume :
25
Issue :
14
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
32664342
Full Text :
https://doi.org/10.3390/molecules25143163