Back to Search Start Over

Freezing the Motion in Hydroxy-Functionalized Ionic Liquids-Temperature Dependent NMR Deuteron Quadrupole Coupling Constants for Two Types of Hydrogen Bonds Far below the Glass Transition.

Authors :
Khudozhitkov AE
Niemann T
Stange P
Donoshita M
Stepanov AG
Kitagawa H
Kolokolov DI
Ludwig R
Source :
The journal of physical chemistry letters [J Phys Chem Lett] 2020 Aug 06; Vol. 11 (15), pp. 6000-6006. Date of Electronic Publication: 2020 Jul 14.
Publication Year :
2020

Abstract

We measured the deuteron quadrupole coupling constants (DQCCs) for hydroxy-functionalized ionic liquids (ILs) with varying alkyl chain length over the temperature range between 60 and 200 K by means of solid-state NMR spectroscopy. For all temperatures, the <superscript>2</superscript> H spectra show two DQCCs representing different types of hydrogen bonds. Higher values, ranging from 220 to 250 kHz, indicate weaker hydrogen bonds between cation and anion (c-a), and lower values varying from 165 to 210 kHz result from stronger hydrogen bonds between the OD groups of cations (c-c), in agreement with recent observations in infrared, neutron diffraction, and NMR studies. We observed different temperature dependencies for (c-a) and (c-c) hydrogen bonding. From the static pattern of the <superscript>2</superscript> H spectra at the lowest temperatures, we derived the true DQCCs being up to 20 kHz larger than recently reported values measured at the glass transition temperature. We were able to freeze the librational motions of the hydrogen bonds in the ILs. The temperature dependence of the (c-a) and (c-c) cluster populations in the glassy state is opposite to that observed in the liquid state, partly anticipating the behavior of ILs tending to crystallize.

Details

Language :
English
ISSN :
1948-7185
Volume :
11
Issue :
15
Database :
MEDLINE
Journal :
The journal of physical chemistry letters
Publication Type :
Academic Journal
Accession number :
32640795
Full Text :
https://doi.org/10.1021/acs.jpclett.0c01731