Back to Search Start Over

Evidence for structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients.

Authors :
Thomas T
Stefanoni D
Dzieciatkowska M
Issaian A
Nemkov T
Hill RC
Francis RO
Hudson KE
Buehler PW
Zimring JC
Hod EA
Hansen KC
Spitalnik SL
D'Alessandro A
Source :
MedRxiv : the preprint server for health sciences [medRxiv] 2020 Jun 30. Date of Electronic Publication: 2020 Jun 30.
Publication Year :
2020

Abstract

The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly-diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, especially short and medium chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, and mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading, RBCs from COVID-19 patients may be incapable of responding to environmental variations in hemoglobin oxygen saturation when traveling from the lungs to peripheral capillaries and, as such, may have a compromised capacity to transport and deliver oxygen.

Details

Language :
English
Database :
MEDLINE
Journal :
MedRxiv : the preprint server for health sciences
Accession number :
32637980
Full Text :
https://doi.org/10.1101/2020.06.29.20142703