Back to Search
Start Over
Giant excitonic absorption and emission in two-dimensional group-III nitrides.
- Source :
-
Scientific reports [Sci Rep] 2020 Jul 01; Vol. 10 (1), pp. 10719. Date of Electronic Publication: 2020 Jul 01. - Publication Year :
- 2020
-
Abstract
- Absorption and emission of pristine-like semiconducting monolayers of BN, AlN, GaN, and InN are systematically studied by ab-initio methods. We calculate the absorption spectra for in-plane and out-of-plane light polarization including quasiparticle and excitonic effects. Chemical trends with the cation of the absorption edge and the exciton binding are discussed in terms of the band structures. Exciton binding energies and localization radii are explained within the Rytova-Keldysh model for excitons in two dimensions. The strong excitonic effects are due to the interplay of low dimensionality, confinement effects, and reduced screening. We find exciton radiative lifetimes ranging from tenths of picoseconds (BN) to tenths of nanoseconds (InN) at room temperature, thus making 2D nitrides, especially InN, promising materials for light-emitting diodes and high-performance solar cells.
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 32612146
- Full Text :
- https://doi.org/10.1038/s41598-020-67667-2