Back to Search Start Over

Mechanisms of Liquid-Phase Exfoliation for the Production of Graphene.

Authors :
Li Z
Young RJ
Backes C
Zhao W
Zhang X
Zhukov AA
Tillotson E
Conlan AP
Ding F
Haigh SJ
Novoselov KS
Coleman JN
Source :
ACS nano [ACS Nano] 2020 Sep 22; Vol. 14 (9), pp. 10976-10985. Date of Electronic Publication: 2020 Jul 07.
Publication Year :
2020

Abstract

Liquid- phase exfoliation (LPE) is the principal method of producing two-dimensional (2D) materials such as graphene in large quantities with a good balance between quality and cost and is now widely adopted by both the academic and industrial sectors. The fragmentation and exfoliation mechanisms involved have usually been simply attributed to the force induced by ultrasound and the interaction with the solvent molecules. Nonetheless, little is known about how they actually occur, i.e. , how thick and large graphite crystals can be exfoliated into thin and small graphene flakes. Here, we demonstrate that during ultrasonic LPE the transition from graphite flakes to graphene takes place in three distinct stages. First, sonication leads to the rupture of large flakes and the formation of kink band striations on the flake surfaces, primarily along zigzag directions. Second, cracks form along these striations, and together with intercalation of solvent, lead to the unzipping and peeling off of thin graphite strips that in the final stage are exfoliated into graphene. The findings will be of great value in the quest to optimize the lateral dimensions, thickness, and yield of graphene and other 2D materials in large-scale LPE for various applications.

Details

Language :
English
ISSN :
1936-086X
Volume :
14
Issue :
9
Database :
MEDLINE
Journal :
ACS nano
Publication Type :
Academic Journal
Accession number :
32598132
Full Text :
https://doi.org/10.1021/acsnano.0c03916