Back to Search
Start Over
Persistence of Bacteriophage Phi 6 on Porous and Nonporous Surfaces and the Potential for Its Use as an Ebola Virus or Coronavirus Surrogate.
- Source :
-
Applied and environmental microbiology [Appl Environ Microbiol] 2020 Aug 18; Vol. 86 (17). Date of Electronic Publication: 2020 Aug 18 (Print Publication: 2020). - Publication Year :
- 2020
-
Abstract
- The infection of health care workers during the 2013 to 2016 Ebola outbreak raised concerns about fomite transmission. In the wake of the coronavirus disease 2019 (COVID-19) pandemic, investigations are ongoing to determine the role of fomites in coronavirus transmission as well. The bacteriophage phi 6 has a phospholipid envelope and is commonly used in environmental studies as a surrogate for human enveloped viruses. The persistence of phi 6 was evaluated as a surrogate for Ebola virus (EBOV) and coronaviruses on porous and nonporous hospital surfaces. Phi 6 was suspended in a body fluid simulant and inoculated onto 1-cm <superscript>2</superscript> coupons of steel, plastic, and two fabric curtain types. The coupons were placed at two controlled absolute humidity (AH) levels: a low AH of 3.0 g/m <superscript>3</superscript> and a high AH of 14.4 g/m <superscript>3</superscript> Phi 6 declined at a lower rate on all materials under low-AH conditions, with a decay rate of 0.06-log <subscript>10</subscript> PFU/day to 0.11-log <subscript>10</subscript> PFU/day, than under the higher AH conditions, with a decay rate of 0.65-log <subscript>10</subscript> PFU/h to 1.42-log <subscript>10</subscript> PFU/day. There was a significant difference in decay rates between porous and nonporous surfaces at both low AH ( P < 0.0001) and high AH ( P < 0.0001). Under these laboratory-simulated conditions, phi 6 was found to be a conservative surrogate for EBOV under low-AH conditions in that it persisted longer than Ebola virus in similar AH conditions. Additionally, some coronaviruses persist longer than phi 6 under similar conditions; therefore, phi 6 may not be a suitable surrogate for coronaviruses. IMPORTANCE Understanding the persistence of enveloped viruses helps inform infection control practices and procedures in health care facilities and community settings. These data convey to public health investigators that enveloped viruses can persist and remain infective on surfaces, thus demonstrating a potential risk for transmission. Under these laboratory-simulated Western indoor hospital conditions, we assessed the suitability of phi 6 as a surrogate for environmental persistence research related to enveloped viruses, including EBOV and coronaviruses.<br /> (This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.)
- Subjects :
- Betacoronavirus physiology
COVID-19
Coronavirus isolation & purification
Coronavirus Infections transmission
Coronavirus Infections virology
Ebolavirus isolation & purification
Hemorrhagic Fever, Ebola transmission
Hemorrhagic Fever, Ebola virology
Hospitals
Humans
Humidity
Pandemics
Pneumonia, Viral transmission
Porosity
SARS-CoV-2
Temperature
Bacteriophage phi 6 isolation & purification
Bacteriophage phi 6 physiology
Coronavirus physiology
Ebolavirus physiology
Environmental Microbiology
Fomites virology
Virus Inactivation
Subjects
Details
- Language :
- English
- ISSN :
- 1098-5336
- Volume :
- 86
- Issue :
- 17
- Database :
- MEDLINE
- Journal :
- Applied and environmental microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 32591388
- Full Text :
- https://doi.org/10.1128/AEM.01482-20