Back to Search Start Over

Movement and Fate of 2,4-D in Urban Soils: A Potential Environmental Health Concern.

Authors :
Meftaul IM
Venkateswarlu K
Dharmarajan R
Annamalai P
Megharaj M
Source :
ACS omega [ACS Omega] 2020 May 26; Vol. 5 (22), pp. 13287-13295. Date of Electronic Publication: 2020 May 26 (Print Publication: 2020).
Publication Year :
2020

Abstract

The fate and movement of 2,4-dichlorophenoxyacetic acid (2,4-D), in terms of sorption-desorption and leaching potential, were evaluated in urban soils following the batch experimental method. The sorption kinetics of 2,4-D in soils followed both "fast" and "slow" sorption processes that could be well described by a pseudo-second-order kinetics model, suggesting that 2,4-D was partitioned into soil organic matter and clay surfaces, and eventually diffused into soil micropores. The sorption isotherms were linear, following both Langmuir and Freundlich models. Partially decomposed or undecomposed organic matter present in urban soils decreased sorption and increased desorption of 2,4-D. Also, sorption of 2,4-D increased with an increase in the contents of clay and Al and Fe oxides, whereas sand and alkaline pH increased the desorption process. The lower calculated K <subscript>d</subscript> values suggest that 2,4-D is highly mobile in urban soils than in agricultural soils. The calculated values of groundwater ubiquity score, leachability index, and hysteresis index indicated that the herbicide is highly prone to leach out from surface soil to groundwater which might affect the quality of potable water. The present study clearly suggests that 2,4-D must be judiciously applied in the urban areas in order to minimize the potential health and environmental risks.<br />Competing Interests: The authors declare no competing financial interest.<br /> (Copyright © 2020 American Chemical Society.)

Details

Language :
English
ISSN :
2470-1343
Volume :
5
Issue :
22
Database :
MEDLINE
Journal :
ACS omega
Publication Type :
Academic Journal
Accession number :
32548515
Full Text :
https://doi.org/10.1021/acsomega.0c01330