Back to Search
Start Over
B55α/PP2A Limits Endothelial Cell Apoptosis During Vascular Remodeling: A Complementary Approach To Disrupt Pathological Vessels?
- Source :
-
Circulation research [Circ Res] 2020 Aug 28; Vol. 127 (6), pp. 707-723. Date of Electronic Publication: 2020 Jun 12. - Publication Year :
- 2020
-
Abstract
- Rationale: How endothelial cells (ECs) migrate and form an immature vascular plexus has been extensively studied. Yet, mechanisms underlying vascular remodeling remain poorly established. A better understanding of these processes may lead to the design of novel therapeutic strategies complementary to current angiogenesis inhibitors.<br />Objective: Starting from our previous observations that PP2A (protein phosphatase 2) regulates the HIF (hypoxia-inducible factor)/PHD-2 (prolyl hydroxylase 2)-constituted oxygen machinery, we hypothesized that this axis could play an important role during blood vessel formation, tissue perfusion, and oxygen restoration.<br />Methods and Results: We show that the PP2A regulatory subunit B55α is at the crossroad between vessel pruning and vessel maturation. Blood vessels with high B55α counter cell stress conditions and thrive for stabilization and maturation. When B55α is inhibited, ECs cannot cope with cell stress and undergo apoptosis, leading to massive pruning of nascent blood vessels. Mechanistically, we found that the B55α/PP2A complex restrains PHD-2 activity, promoting EC survival in a HIF-dependent manner, and furthermore dephosphorylates p38, altogether protecting ECs against cell stress occurring, for example, during the onset of blood flow. In tumors, EC-specific B55α deficiency induces pruning of immature-like tumor blood vessels resulting in delayed tumor growth and metastasis, without affecting nonpathological vessels. Consistently, systemic administration of a pan-PP2A inhibitor disrupts vascular network formation and tumor progression in vivo without additional effects on B55α-deficient vessels.<br />Conclusions: Our data underline a unique role of the B55α/PP2A phosphatase complex in vessel remodeling and suggest the use of PP2A-inhibitors as potent antiangiogenic drugs targeting specifically nascent blood vessels with a mode-of-action complementary to VEGF-R (vascular endothelial growth factor receptor)-targeted therapies. Graphical Abstract: A graphical abstract is available for this article.
- Subjects :
- Angiogenesis Inhibitors pharmacology
Animals
Breast Neoplasms drug therapy
Breast Neoplasms genetics
Breast Neoplasms pathology
Carcinoma, Lewis Lung drug therapy
Carcinoma, Lewis Lung genetics
Carcinoma, Lewis Lung pathology
Cell Line, Tumor
Endothelial Cells drug effects
Endothelial Cells pathology
Enzyme Inhibitors pharmacology
Female
Human Umbilical Vein Endothelial Cells drug effects
Human Umbilical Vein Endothelial Cells enzymology
Human Umbilical Vein Endothelial Cells pathology
Humans
Hypoxia-Inducible Factor-Proline Dioxygenases genetics
Hypoxia-Inducible Factor-Proline Dioxygenases metabolism
Male
Mice, Inbred C57BL
Mice, Knockout
Phosphorylation
Protein Phosphatase 2 antagonists & inhibitors
Protein Phosphatase 2 genetics
Signal Transduction
p38 Mitogen-Activated Protein Kinases metabolism
Apoptosis
Breast Neoplasms enzymology
Carcinoma, Lewis Lung enzymology
Endothelial Cells enzymology
Neovascularization, Pathologic
Protein Phosphatase 2 metabolism
Vascular Remodeling
Subjects
Details
- Language :
- English
- ISSN :
- 1524-4571
- Volume :
- 127
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Circulation research
- Publication Type :
- Academic Journal
- Accession number :
- 32527198
- Full Text :
- https://doi.org/10.1161/CIRCRESAHA.119.316071