Back to Search Start Over

Size-dependent influence of NO x on the growth rates of organic aerosol particles.

Authors :
Yan C
Nie W
Vogel AL
Dada L
Lehtipalo K
Stolzenburg D
Wagner R
Rissanen MP
Xiao M
Ahonen L
Fischer L
Rose C
Bianchi F
Gordon H
Simon M
Heinritzi M
Garmash O
Roldin P
Dias A
Ye P
Hofbauer V
Amorim A
Bauer PS
Bergen A
Bernhammer AK
Breitenlechner M
Brilke S
Buchholz A
Mazon SB
Canagaratna MR
Chen X
Ding A
Dommen J
Draper DC
Duplissy J
Frege C
Heyn C
Guida R
Hakala J
Heikkinen L
Hoyle CR
Jokinen T
Kangasluoma J
Kirkby J
Kontkanen J
Kürten A
Lawler MJ
Mai H
Mathot S
Mauldin RL 3rd
Molteni U
Nichman L
Nieminen T
Nowak J
Ojdanic A
Onnela A
Pajunoja A
Petäjä T
Piel F
Quéléver LLJ
Sarnela N
Schallhart S
Sengupta K
Sipilä M
Tomé A
Tröstl J
Väisänen O
Wagner AC
Ylisirniö A
Zha Q
Baltensperger U
Carslaw KS
Curtius J
Flagan RC
Hansel A
Riipinen I
Smith JN
Virtanen A
Winkler PM
Donahue NM
Kerminen VM
Kulmala M
Ehn M
Worsnop DR
Source :
Science advances [Sci Adv] 2020 May 27; Vol. 6 (22), pp. eaay4945. Date of Electronic Publication: 2020 May 27 (Print Publication: 2020).
Publication Year :
2020

Abstract

Atmospheric new-particle formation (NPF) affects climate by contributing to a large fraction of the cloud condensation nuclei (CCN). Highly oxygenated organic molecules (HOMs) drive the early particle growth and therefore substantially influence the survival of newly formed particles to CCN. Nitrogen oxide (NO <subscript>x</subscript> ) is known to suppress the NPF driven by HOMs, but the underlying mechanism remains largely unclear. Here, we examine the response of particle growth to the changes of HOM formation caused by NO <subscript>x</subscript> . We show that NO <subscript>x</subscript> suppresses particle growth in general, but the suppression is rather nonuniform and size dependent, which can be quantitatively explained by the shifted HOM volatility after adding NO <subscript>x</subscript> . By illustrating how NO <subscript>x</subscript> affects the early growth of new particles, a critical step of CCN formation, our results help provide a refined assessment of the potential climatic effects caused by the diverse changes of NO <subscript>x</subscript> level in forest regions around the globe.<br /> (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)

Details

Language :
English
ISSN :
2375-2548
Volume :
6
Issue :
22
Database :
MEDLINE
Journal :
Science advances
Publication Type :
Academic Journal
Accession number :
32518819
Full Text :
https://doi.org/10.1126/sciadv.aay4945