Back to Search Start Over

Vaginal bacterial community composition and concentrations of estradiol at the time of artificial insemination in Brangus heifers.

Authors :
Messman RD
Contreras-Correa ZE
Paz HA
Perry G
Lemley CO
Source :
Journal of animal science [J Anim Sci] 2020 Jun 01; Vol. 98 (6).
Publication Year :
2020

Abstract

The knowledge surrounding the bovine vaginal microbiota and its implications on fertility and reproductive traits remains incomplete. The objective of the current study was to characterize the bovine vaginal bacterial community and estradiol concentrations at the time of artificial insemination (AI). Brangus heifers (n = 78) underwent a 7-d Co-Synch + controlled internal drug release estrus synchronization protocol. At AI, a double-guarded uterine culture swab was used to sample the anterior vaginal tract. Immediately after swabbing the vaginal tract, blood samples were collected by coccygeal venipuncture to determine concentrations of estradiol. Heifers were retrospectively classified as pregnant (n = 29) vs. nonpregnant (n = 49) between 41 and 57 d post-AI. Additionally, heifers were classified into low (1.1 to 2.5 pg/mL; n = 21), medium (2.6 to 6.7 pg/mL; n = 30), and high (7.2 to 17.6 pg/mL; n = 27) concentration of estradiol. The vaginal bacterial community composition was determined through sequencing of the V4 region from the 16S rRNA gene using the Illumina Miseq platform. Alpha diversity was compared via ANOVA and beta diversity was compared via PERMANOVA. There were no differences in the Shannon diversity index (alpha diversity; P = 0.336) or Bray-Curtis dissimilarity (beta diversity; P = 0.744) of pregnant vs. nonpregnant heifers. Overall, bacterial community composition in heifers with high, medium, or low concentrations of estradiol did not differ (P = 0.512). While no overall compositional differences were observed, species-level differences were present within pregnancy status and estradiol concentration groups. The implications of these species-level differences are unknown, but these differences could alter the vaginal environment thereby influencing fertility and vaginal health. Therefore, species-level changes could provide better insight rather than overall microbial composition in relation to an animal's reproductive health.<br /> (© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1525-3163
Volume :
98
Issue :
6
Database :
MEDLINE
Journal :
Journal of animal science
Publication Type :
Academic Journal
Accession number :
32515480
Full Text :
https://doi.org/10.1093/jas/skaa178