Back to Search Start Over

Further study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography.

Authors :
D'Orazio G
Fanali C
Fanali S
Gentili A
Karchkhadze M
Chankvetadze B
Source :
Journal of chromatography. A [J Chromatogr A] 2020 Jul 19; Vol. 1623, pp. 461213. Date of Electronic Publication: 2020 May 08.
Publication Year :
2020

Abstract

In the present study separation of enantiomers of some chiral neutral, basic and weakly acidic analytes was investigated on the chiral stationary phase (CSP) made by covalent immobilization of amylose tris(3-chloro-5-methylphenylcarbamate) onto aminopropylsilanized (APS) silica in nano-liquid chromatography (nano-LC) in aqueous methanol or acetonitrile mixtures. It has been shown that similar to high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) this chiral selector is useful for separation of enantiomers of neutral, basic and acidic analytes also in nano-LC. In comparison to our previous research, in which the chiral selector (CS) was bonded on native silica, in this study, the CS was immobilized on APS silica in order to improve chromatographic performance towards basic analytes. In fact, some improvement was observed and surprisingly not only for basic but also for neutral and acidic analytes. Again, quite unexpectedly almost no electroosmotic flow (EOF) was observed in capillaries packed with ca. 20% (w/w) amylose tris(3-chloro-5-methylphenylcarbamate) immobilized onto APS silica although the same APS silica before attachment of chiral selector exhibited significant EOF. In order to generate EOF in the capillaries with the CSP and enable capillary electrochromatographic (CEC) experiment on it, the short segment of the capillary column was packed with APS silica without chiral selector. The EOF in such capillary enabled CEC experiment and some preliminary results are reported here.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2020 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3778
Volume :
1623
Database :
MEDLINE
Journal :
Journal of chromatography. A
Publication Type :
Academic Journal
Accession number :
32505297
Full Text :
https://doi.org/10.1016/j.chroma.2020.461213