Back to Search
Start Over
Filoviruses Use the HOPS Complex and UVRAG To Traffic to Niemann-Pick C1 Compartments during Viral Entry.
- Source :
-
Journal of virology [J Virol] 2020 Jul 30; Vol. 94 (16). Date of Electronic Publication: 2020 Jul 30 (Print Publication: 2020). - Publication Year :
- 2020
-
Abstract
- Ebola virus (EBOV) entry requires internalization into host cells and extensive trafficking through the endolysosomal network in order to reach late endosomal/lysosomal compartments that contain triggering factors for viral membrane fusion. These triggering factors include low-pH-activated cellular cathepsin proteases, which cleave the EBOV glycoprotein (GP), exposing a domain which binds to the filoviral receptor, the cholesterol transporter Niemann-Pick C1 (NPC1). Here, we report that trafficking of EBOV to NPC1 requires expression of the homotypic fusion and protein sorting (HOPS) tethering complex as well as its regulator, UV radiation resistance-associated gene (UVRAG). Using an inducible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we demonstrated that depletion of HOPS subunits as well as UVRAG impairs entry by all pathogenic filoviruses. UVRAG depletion resulted in reduced delivery of EBOV virions to NPC1 <superscript>+</superscript> cellular compartments. Furthermore, we show that deletion of a domain on UVRAG known to be required for interaction with the HOPS complex results in impaired EBOV entry. Taken together, our studies demonstrate that EBOV requires both expression of and coordination between the HOPS complex and UVRAG in order to mediate efficient viral entry. IMPORTANCE Ebola viruses (EBOV) and other filoviruses cause sporadic and unpredictable outbreaks of highly lethal diseases. The lack of FDA-approved therapeutics, particularly ones with panfiloviral specificity, highlights the need for continued research efforts to understand aspects of the viral life cycle that are common to all filoviruses. As such, viral entry is of particular interest, as all filoviruses must reach cellular compartments containing the viral receptor Niemann-Pick C1 to enter cells. Here, we present an inducible CRISPR/Cas9 method to rapidly and efficiently generate knockout cells in order to interrogate the roles of a broad range of host factors in viral entry. Using this approach, we showed that EBOV entry depends on both the homotypic fusion and protein sorting (HOPS) tethering complex in coordination with UV radiation resistance-associated gene (UVRAG). Importantly, we demonstrate that the HOPS complex and UVRAG are required by all pathogenic filoviruses, representing potential targets for panfiloviral therapeutics.<br /> (Copyright © 2020 Bo et al.)
- Subjects :
- Biological Transport
Carrier Proteins metabolism
Ebolavirus genetics
Ebolavirus pathogenicity
Endosomes metabolism
Filoviridae genetics
Filoviridae Infections genetics
Filoviridae Infections metabolism
Glycoproteins metabolism
Hemorrhagic Fever, Ebola metabolism
Host-Pathogen Interactions
Membrane Glycoproteins metabolism
Protein Transport genetics
Protein Transport physiology
Receptors, Virus metabolism
Tumor Suppressor Proteins genetics
Viral Envelope Proteins genetics
Virus Internalization drug effects
Ebolavirus metabolism
Niemann-Pick C1 Protein metabolism
Tumor Suppressor Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1098-5514
- Volume :
- 94
- Issue :
- 16
- Database :
- MEDLINE
- Journal :
- Journal of virology
- Publication Type :
- Academic Journal
- Accession number :
- 32493822
- Full Text :
- https://doi.org/10.1128/JVI.01002-20