Back to Search
Start Over
Beneficial Effects of Inflammatory Cytokine-Targeting Aptamers in an Animal Model of Chronic Prostatitis.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2020 May 31; Vol. 21 (11). Date of Electronic Publication: 2020 May 31. - Publication Year :
- 2020
-
Abstract
- Non-bacterial prostatitis is an inflammatory disease that is difficult to treat. Oligonucleotide aptamers are well known for their stability and flexibility in conjugating various inflammatory molecules. In this study, we investigated the effects of inflammatory cytokine-targeting aptamers (ICTA), putative neutralizers of TNF-alpha and IL-1 beta activation, on local carrageenan-induced prostate inflammation, allodynia, and hyperalgesia in rats. In vitro evaluation confirmed the binding capability of ICTA. Intraprostatic injection of carrageenan or control vehicle was performed in six-week-old rats, and ICTA (150 µg) or vehicle was administered in the prostate along with carrageenan injection. The von Frey filament test was performed to determine mechanical allodynia, and prostate inflammation was examined seven days after drug administration. Local carrageenan administration resulted in a reduction of the tactile threshold. The levels of mononuclear cell infiltration, pro-inflammatory cytokine interleukin-1 beta (b), caspase-1 (casp-1), and Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing proteins 1 and 3 (NALP1 and NALP3) in the prostate of rats were increased seven days after carrageenan injection. Treatment with ICTA significantly attenuated the carrageenan-induced hyperalgesia and reduced the elevated levels of proteins including TNF-a and IL-1b in the rats. Apoptosis markers, B-cell lymphoma 2-associated X protein (Bax) and caspase-3, were elevated in ICTA-treated Chronic pelvic pain syndrome (CPPS) rats. These results suggest that ICTA provides protection against local carrageenan-induced enhanced pain sensitivity, and that the neutralization of proinflammatory cytokines may result in inflammatory cell apoptosis.
- Subjects :
- Animals
Apoptosis
Carrageenan pharmacology
Caspase 1 metabolism
Caspase 3 metabolism
Chronic Pain drug therapy
Disease Models, Animal
Humans
Hyperalgesia metabolism
Inflammation
Interleukin-1beta metabolism
Male
NLR Family, Pyrin Domain-Containing 3 Protein metabolism
Nerve Tissue Proteins metabolism
Pain Threshold
Pelvic Pain drug therapy
Prostate drug effects
Rats
Rats, Sprague-Dawley
bcl-2-Associated X Protein metabolism
Aptamers, Nucleotide pharmacology
Cytokines metabolism
Prostatitis drug therapy
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 21
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 32486412
- Full Text :
- https://doi.org/10.3390/ijms21113953