Back to Search Start Over

Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories.

Authors :
Chen Y
Boggess EE
Ocasio ER
Warner A
Kerns L
Drapal V
Gossling C
Ross W
Gourse RL
Shao Z
Dickerson J
Mansell TJ
Jarboe LR
Source :
Metabolic engineering [Metab Eng] 2020 Sep; Vol. 61, pp. 120-130. Date of Electronic Publication: 2020 May 28.
Publication Year :
2020

Abstract

Adaptive laboratory evolution is often used to improve the performance of microbial cell factories. Reverse engineering of evolved strains enables learning and subsequent incorporation of novel design strategies via the design-build-test-learn cycle. Here, we reverse engineer a strain of Escherichia coli previously evolved for increased tolerance of octanoic acid (C8), an attractive biorenewable chemical, resulting in increased C8 production, increased butanol tolerance, and altered membrane properties. Here, evolution was determined to have occurred first through the restoration of WaaG activity, involved in the production of lipopolysaccharides, then an amino acid change in RpoC, a subunit of RNA polymerase, and finally mutation of the BasS-BasR two component system. All three mutations were required in order to reproduce the increased growth rate in the presence of 20 mM C8 and increased cell surface hydrophobicity; the WaaG and RpoC mutations both contributed to increased C8 titers, with the RpoC mutation appearing to be the major driver of this effect. Each of these mutations contributed to changes in the cell membrane. Increased membrane integrity and rigidity and decreased abundance of extracellular polymeric substances can be attributed to the restoration of WaaG. The increase in average lipid tail length can be attributed to the RpoC <superscript>H419P</superscript> mutation, which also confers tolerance to other industrially-relevant inhibitors, such as furfural, vanillin and n-butanol. The RpoC <superscript>H419P</superscript> mutation may impact binding or function of the stringent response alarmone ppGpp to RpoC site 1. Each of these mutations provides novel strategies for engineering microbial robustness, particularly at the level of the microbial cell membrane.<br /> (Copyright © 2020 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1096-7184
Volume :
61
Database :
MEDLINE
Journal :
Metabolic engineering
Publication Type :
Academic Journal
Accession number :
32474056
Full Text :
https://doi.org/10.1016/j.ymben.2020.05.001