Back to Search Start Over

Identifying modifier genes for hypertrophic cardiomyopathy.

Authors :
Chen Y
Xu F
Munkhsaikhan U
Boyle C
Borcky T
Zhao W
Purevjav E
Towbin JA
Liao F
Williams RW
Bhattacharya SK
Lu L
Sun Y
Source :
Journal of molecular and cellular cardiology [J Mol Cell Cardiol] 2020 Jul; Vol. 144, pp. 119-126. Date of Electronic Publication: 2020 May 26.
Publication Year :
2020

Abstract

Background: Hypertrophic cardiomyopathy (HCM) severity greatly varies among patients even with the same HCM gene mutations. This variation is largely regulated by modifier gene(s), which, however, remain largely unknown. The current study is aimed to identify modifier genes using BXD strains, a large murine genetic reference population (GRP) derived from crosses between C57BL/6 J (B6) and D2 DBA/2 J (D2) mice. D2 mice natualy carrythe genetic basis and phenotypes of HCM.<br />Methods: Myocardial hypertrophy, the major phenotype of HCM, was determined by cardiomyocyte size on cardiac sections in 30 BXD strains, and their parental B6 and D2 strains and morphometric analysis was performed. Quantitative Trait Locus (QTL) mapping for cardiomyocyte sizes was conducted with WebQTL in GeneNetwork. Correlation of cardiomyocyte size and cardiac gene expression in BXDs accessed from GeneNetwork were evaluated. QTL candidate genes associated with cardiomyocyte sizes were prioritized based on the score system.<br />Results: Cardiomyocyte size varied significantly among BXD strains. Interval mapping on cardiomyocyte size data showed a significant QTL on chromosome (Chr) 2 at 66- 73.5 Mb and a suggestive QTL on Chr 5 at 20.9-39.7 Mb. Further score system revealed a high QTL score for Xirp2 in Chr 2. Xirp2 encodes xin actin-binding repeat containing 2, which is highly expressed in cardiac tissue and associate with cardiomyopathy and heart failure. In Chr5 QTL, Nos3, encoding nitric oxide synthase 3, received the highest score, which is significantly correlated with cardiomyocyte size.<br />Conclusion: These results indicate that Xirp2 and Nos3 serve as novel candidate modifier genes for myocardial hypertrophy in HCM. These candidate genes will be validated in our future studies.<br /> (Copyright © 2020 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1095-8584
Volume :
144
Database :
MEDLINE
Journal :
Journal of molecular and cellular cardiology
Publication Type :
Academic Journal
Accession number :
32470469
Full Text :
https://doi.org/10.1016/j.yjmcc.2020.05.006