Back to Search Start Over

Tracking tendon fibers to their insertion - a 3D analysis of the Achilles tendon enthesis in mice.

Authors :
Sartori J
Stark H
Source :
Acta biomaterialia [Acta Biomater] 2021 Jan 15; Vol. 120, pp. 146-155. Date of Electronic Publication: 2020 May 16.
Publication Year :
2021

Abstract

Tendon insertions to bone are heavily loaded transitions between soft and hard tissues. The fiber courses in the tendon have profound effects on the distribution of stress along and across the insertion. We tracked fibers of the Achilles tendon in mice in micro-computed tomographies and extracted virtual transversal sections. The fiber tracks and shapes were analyzed from a position in the free tendon to the insertion. Mechanically relevant parameters were extracted. The fiber number was found to stay about constant along the tendon. But the fiber cross-sectional areas decrease towards the insertion. The fibers mainly interact due to tendon twist, while branching only creates small branching clusters with low levels of divergence along the tendon. The highest fiber curvatures were found within the unmineralized entheseal fibrocartilage. The fibers inserting at a protrusion of the insertion area form a distinct portion within the tendon. Tendon twist is expected to contribute to a homogeneous distribution of stress among the fibers. According to the low cross-sectional areas and the high fiber curvatures, tensile and compressive stress are expected to peak at the insertion. These findings raise the question whether the insertion is reinforced in terms of fiber strength or by other load-bearing components besides the fibers. STATEMENT OF SIGNIFICANCE: The presented study is the first analysis of the 3D fiber tracks in macroscopic tendon samples as determined by a combination of cell-maceration, phase-contrast µCT and template-based tracking. The structural findings change the understanding of the tendon-bone insertion and its biomechanics: (1) The insertion is not reinforced in terms of fiber numbers or sizes. Its robustness remains unexplained. (2) The orientation of fibers in the tendon center is higher than in the margins. This arrangement could inspire material development. (3) Fibers inserting at a protrusion of the insertion area stem from a distinct portion within the tendon. The results show that fibrous structure analysis can link macro- to micromechanics and that it is ready for the application to complete muscle-tendon units.<br /> (Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1878-7568
Volume :
120
Database :
MEDLINE
Journal :
Acta biomaterialia
Publication Type :
Academic Journal
Accession number :
32428686
Full Text :
https://doi.org/10.1016/j.actbio.2020.05.001