Back to Search Start Over

The fate and impact of TCC in nitrifying cultures.

Authors :
Bian Y
Wang D
Liu X
Yang Q
Liu Y
Wang Q
Ni BJ
Li H
Zhang Y
Source :
Water research [Water Res] 2020 Jul 01; Vol. 178, pp. 115851. Date of Electronic Publication: 2020 Apr 23.
Publication Year :
2020

Abstract

Triclocarban (TCC) is a highly effective antibacterial agent, which is widely used in a variety of applications and present at significant levels (e.g., 760 μg/L) in wastewater worldwide. However, the interaction between TCC and nitrifiers, important microbial cultures in wastewater treatment plants, has not been documented. This work therefore aimed to evaluate the fate of TCC in a nitrifying culture and its impact on nitrifiers in four long-term nitrifiers-rich reactors, which received synthetic wastewater containing 0, 0.1, 1, or 5 mg/L TCC. Experimental results showed that 36.7%-50.7% of wastewater TCC was removed by nitrifying cultures in stable operation. Mass balance analysis revealed that the removal of TCC was mainly achieved through adsorption rather than biodegradation. Adsorption kinetic analysis indicated that inhomogeneous multilayer adsorption was responsible for the removal while fourier transform infrared spectroscopy indicated that several functional groups such as hydroxyl, amide and polysaccharide seemed to be the main adsorption sites. The adsorbed TCC significantly deteriorated settleability and performance of nitrifying cultures. With an increase of influent TCC from 0 to 5 mg/L, reactor volatile suspended solids and effluent nitrate decreased from 1200 ± 90 mg/L and 300.81 ± 7.52 mg/L to 880 ± 80 and 7.35 ± 4.62 mg/L while effluent ammonium and nitrite increased from 0.41 ± 0.03 and 0.45 ± 0.23 mg/L to104.65 ± 3.46 and 182.06 ± 7.54 mg/L, respectively. TCC increased the extracellular polymeric substances of nitrifying cultures, inhibited the specific activities of nitrifiers, and altered the abundance of nitrifiers especially Nitrospira sp.. In particular, TCC at environmentally relevant concentration (i.e., 0.1 mg/L) significantly inhibited NOB activity and reduced NOB population.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2020 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-2448
Volume :
178
Database :
MEDLINE
Journal :
Water research
Publication Type :
Academic Journal
Accession number :
32371287
Full Text :
https://doi.org/10.1016/j.watres.2020.115851