Back to Search
Start Over
Exposure to mold proteases stimulates mucin production in airway epithelial cells through Ras/Raf1/ERK signal pathway.
- Source :
-
PloS one [PLoS One] 2020 Apr 22; Vol. 15 (4), pp. e0231990. Date of Electronic Publication: 2020 Apr 22 (Print Publication: 2020). - Publication Year :
- 2020
-
Abstract
- Environmental mold (fungus) exposure poses a significant threat to public health by causing illnesses ranging from invasive fungal diseases in immune compromised individuals to allergic hypertensive diseases such as asthma and asthma exacerbation in otherwise healthy people. However, the molecular pathogenesis has not been completely understood, and treatment options are limited. Due to its thermo-tolerance to the normal human body temperature, Aspergillus. fumigatus (A.fumigatus) is one of the most important human pathogens to cause different lung fungal diseases including fungal asthma. Airway obstruction and hyperresponsiveness caused by mucus overproduction are the hallmarks of many A.fumigatus induced lung diseases. To understand the underlying molecular mechanism, we have utilized a well-established A.fumigatus extracts (AFE) model to elucidate downstream signal pathways that mediate A.fumigatus induced mucin production in airway epithelial cells. AFE was found to stimulate time- and dose-dependent increase of major airway mucin gene expression (MUC5AC and MUC5B) partly via the elevation of their promoter activities. We also demonstrated that EGFR was required but not sufficient for AFE-induced mucin expression, filling the paradoxical gap from a previous study using the same model. Furthermore, we showed that fungal proteases in AFE were responsible for mucin induction by activating a Ras/Raf1/ERK signaling pathway. Ca2+ signaling, but ROS, both of which were stimulated by fungal proteases, was an indispensable determinant for ERK activation and mucin induction. The discovery of this novel pathway likely contributes to our understanding of the pathogenesis of fungal sensitization in allergic diseases such as fungal asthma.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Aspergillus fumigatus pathogenicity
Calcium metabolism
Cell Line
Epithelial Cells drug effects
Epithelial Cells metabolism
ErbB Receptors metabolism
Humans
Lung cytology
MAP Kinase Signaling System
Mucin 5AC genetics
Mucin 5AC metabolism
Mucin-5B genetics
Mucin-5B metabolism
Mucins genetics
Proto-Oncogene Proteins c-raf metabolism
Reactive Oxygen Species metabolism
ras Proteins metabolism
Aspergillus fumigatus enzymology
Fungal Proteins toxicity
Host-Pathogen Interactions physiology
Mucins metabolism
Peptide Hydrolases toxicity
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 15
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 32320453
- Full Text :
- https://doi.org/10.1371/journal.pone.0231990