Back to Search
Start Over
Genes acting in synapses and neuron projections are early targets of selection during urban colonization.
- Source :
-
Molecular ecology [Mol Ecol] 2020 Sep; Vol. 29 (18), pp. 3403-3412. Date of Electronic Publication: 2020 Jun 07. - Publication Year :
- 2020
-
Abstract
- When a species colonizes an urban habitat, differences in the environment can create novel selection pressures. Successful colonization will further lead to demographic perturbations and genetic drift, which can interfere with selection. Here, we test for consistent urban selection signals in multiple populations of the burrowing owl (Athene cunicularia), a species that colonized South American cities just a few decades ago. We sequenced 213 owls from three urban-rural population pairs and performed a genome-wide comparison of urban against rural birds. We further studied genome-wide associations with flight initiation distance, a measure of harm avoidance in which urban and rural birds are known to differ. Based on four samples taken over nine years from one of the urban populations, we investigated temporal allele frequency changes. The genomic data were also used to identify urban-specific signatures of selective sweeps. Single genomic sites did not reach genome-wide significance for any association. However, a gene-set analysis on the strongest signals from these four selection scans suggests a significant enrichment of genes with known functions related to synapses and neuron projections. We identified 98 genes predominantly expressed in the brain, of which many may play a role in the modulation of brain connectivity and consequently in cognitive function and motivational behaviour during urbanization. Furthermore, polymorphisms in the promoter region of the synaptic SERT gene - one of the two candidates known to correlate with urban colonization in birds - associated with the habitat in which individuals lived (urban vs. rural).<br /> (© 2020 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Subjects :
- Animals
Cities
Humans
Neurons
Synapses
Urban Population
Strigiformes
Subjects
Details
- Language :
- English
- ISSN :
- 1365-294X
- Volume :
- 29
- Issue :
- 18
- Database :
- MEDLINE
- Journal :
- Molecular ecology
- Publication Type :
- Academic Journal
- Accession number :
- 32310323
- Full Text :
- https://doi.org/10.1111/mec.15451