Back to Search Start Over

Designing a species-selective lure based on microbial volatiles to target Lobesia botrana.

Authors :
Larsson Herrera S
Rikk P
Köblös G
Szelényi MO
Molnár BP
Dekker T
Tasin M
Source :
Scientific reports [Sci Rep] 2020 Apr 16; Vol. 10 (1), pp. 6512. Date of Electronic Publication: 2020 Apr 16.
Publication Year :
2020

Abstract

Sustainable, low impact control methods, including mating disruption and microbial insecticides against L. botrana have been available for decades. Yet, successful implementation has been restricted to only a few grapevine districts in the world. A limiting factor is the lack of a female attractant to either monitor or control the damaging sex. Volatile attractants for both female and male insects can be used to assess when L. botrana populations exceed economic thresholds, and to decrease the use of synthetic pesticides within both conventional and pheromone programs. Rather than using host-plant volatiles, which are readily masked by background volatiles released by the main crop, we tested the attractiveness of volatiles that signify microbial breakdown and more likely stand out against the background odour. A two-component blend of 2-phenylethanol (2-PET) and acetic acid (AA) caught significant numbers of both sexes. Catches increased with AA and, to a minimal extent, 2-PET loads. However, a higher load of 2-PET also increased bycatches, especially of Lepidoptera and Neuroptera. Major (ethanol, ethyl acetate, 3-methyl-1-butanol) or minor (esters, aldehydes, alcohols and a ketone) fermentation volatiles, did surprisingly not improve the attraction of L. botrana compared to the binary blend of 2-PET and AA alone, but strongly increased bycatches. The most attractive lure may thus not be the best choice in terms of specificity. We suggest that future research papers always disclose all bycatches to permit evaluation of lures in terms of sustainability.

Details

Language :
English
ISSN :
2045-2322
Volume :
10
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
32300184
Full Text :
https://doi.org/10.1038/s41598-020-63088-3