Back to Search
Start Over
Biosensors Platform Based on Chitosan/AuNPs/Phthalocyanine Composite Films for the Electrochemical Detection of Catechol. The Role of the Surface Structure.
- Source :
-
Sensors (Basel, Switzerland) [Sensors (Basel)] 2020 Apr 10; Vol. 20 (7). Date of Electronic Publication: 2020 Apr 10. - Publication Year :
- 2020
-
Abstract
- Biosensor platforms consisting of layer by layer films combining materials with different functionalities have been developed and used to obtain improved catechol biosensors. Tyrosinase (Tyr) or laccase (Lac) were deposited onto LbL films formed by layers of a cationic linker (chitosan, CHI) alternating with layers of anionic electrocatalytic materials (sulfonated copper phthalocyanine, CuPcS or gold nanoparticles, AuNP). Films with different layer structures were successfully formed. Characterization of surface roughness and porosity was carried out using AFM. Electrochemical responses towards catechol showed that the LbL composites efficiently improved the electron transfer path between Tyr or Lac and the electrode surface, producing an increase in the intensity over the response in the absence of the LbL platform. LbL structures with higher roughness and pore size facilitated the diffusion of catechol, resulting in lower LODs. The [(CHI)-(AuNP)-(CHI)-(CuPcS)] <subscript>2</subscript> -Tyr showed an LOD of 8.55∙10 <superscript>-4</superscript> μM, which was one order of magnitude lower than the 9.55·10 <superscript>-3</superscript> µM obtained with [(CHI)-(CuPcS)-(CHI)-(AuNP)] <subscript>2</subscript> -Tyr, and two orders of magnitude lower than the obtained with other nanostructured platforms. It can be concluded that the combination of adequate materials with complementary activity and the control of the structure of the platform is an excellent strategy to obtain biosensors with improved performances.
- Subjects :
- Electrochemical Techniques
Electrodes
Enzymes, Immobilized chemistry
Enzymes, Immobilized metabolism
Isoindoles
Laccase chemistry
Laccase metabolism
Limit of Detection
Monophenol Monooxygenase chemistry
Monophenol Monooxygenase metabolism
Reproducibility of Results
Surface Properties
Biosensing Techniques methods
Catechols analysis
Chitosan chemistry
Gold chemistry
Indoles chemistry
Metal Nanoparticles chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1424-8220
- Volume :
- 20
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Sensors (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 32290315
- Full Text :
- https://doi.org/10.3390/s20072152