Back to Search Start Over

Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes.

Authors :
Shin H
Oh S
Hong S
Kang M
Kang D
Ji YG
Choi BH
Kang KW
Jeong H
Park Y
Hong S
Kim HK
Choi Y
Source :
ACS nano [ACS Nano] 2020 May 26; Vol. 14 (5), pp. 5435-5444. Date of Electronic Publication: 2020 Apr 17.
Publication Year :
2020

Abstract

Lung cancer has a high mortality rate, but an early diagnosis can contribute to a favorable prognosis. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for early-stage diagnosis. Exosomes, nanosized extracellular vesicles found in blood, have been proposed as promising biomarkers for liquid biopsy. Here, we demonstrate an accurate diagnosis of early-stage lung cancer, using deep learning-based surface-enhanced Raman spectroscopy (SERS) of the exosomes. Our approach was to explore the features of cell exosomes through deep learning and figure out the similarity in human plasma exosomes, without learning insufficient human data. The deep learning model was trained with SERS signals of exosomes derived from normal and lung cancer cell lines and could classify them with an accuracy of 95%. In 43 patients, including stage I and II cancer patients, the deep learning model predicted that plasma exosomes of 90.7% patients had higher similarity to lung cancer cell exosomes than the average of the healthy controls. Such similarity was proportional to the progression of cancer. Notably, the model predicted lung cancer with an area under the curve (AUC) of 0.912 for the whole cohort and stage I patients with an AUC of 0.910. These results suggest the great potential of the combination of exosome analysis and deep learning as a method for early-stage liquid biopsy of lung cancer.

Details

Language :
English
ISSN :
1936-086X
Volume :
14
Issue :
5
Database :
MEDLINE
Journal :
ACS nano
Publication Type :
Academic Journal
Accession number :
32286793
Full Text :
https://doi.org/10.1021/acsnano.9b09119