Back to Search
Start Over
Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in Pseudomonas aeruginosa.
- Source :
-
Scientific reports [Sci Rep] 2020 Apr 10; Vol. 10 (1), pp. 6232. Date of Electronic Publication: 2020 Apr 10. - Publication Year :
- 2020
-
Abstract
- In Pseudomonas aeruginosa, the transition between planktonic and biofilm lifestyles is modulated by the intracellular secondary messenger cyclic dimeric-GMP (c-di-GMP) in response to environmental conditions. Here, we used gene deletions to investigate how the environmental stimulus nitric oxide (NO) is linked to biofilm dispersal, focusing on biofilm dispersal phenotype from proteins containing putative c-di-GMP turnover and Per-Arnt-Sim (PAS) sensory domains. We document opposed physiological roles for the genes ΔrbdA and Δpa2072 that encode proteins with identical domain structure: while ΔrbdA showed elevated c-di-GMP levels, restricted motility and promoted biofilm formation, c-di-GMP levels were decreased in Δpa2072, and biofilm formation was inhibited, compared to wild type. A second pair of genes, ΔfimX and ΔdipA, were selected on the basis of predicted impaired c-di-GMP turnover function: ΔfimX showed increased, ΔdipA decreased NO induced biofilm dispersal, and the genes effected different types of motility, with reduced twitching for ΔfimX and reduced swimming for ΔdipA. For all four deletion mutants we find that NO-induced biomass reduction correlates with increased NO-driven swarming, underlining a significant role for this motility in biofilm dispersal. Hence P. aeruginosa is able to differentiate c-di-GMP output using structurally highly related proteins that can contain degenerate c-di-GMP turnover domains.
- Subjects :
- Bacterial Proteins genetics
Cyclic GMP metabolism
Gene Expression Regulation, Bacterial physiology
Nitric Oxide metabolism
Phosphoric Diester Hydrolases genetics
Protein Domains
Sequence Deletion
Bacterial Proteins metabolism
Biofilms growth & development
Genes, Bacterial genetics
Phosphoric Diester Hydrolases metabolism
Pseudomonas aeruginosa physiology
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 32277108
- Full Text :
- https://doi.org/10.1038/s41598-020-63008-5