Back to Search Start Over

Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil.

Authors :
Fernandes AFT
Wang P
Staley C
Aparecida Silva Moretto J
Miguel Altarugio L
Chagas Campanharo S
Guedes Stehling E
Jay Sadowsky M
Source :
Microbes and environments [Microbes Environ] 2020; Vol. 35 (2).
Publication Year :
2020

Abstract

Atrazine is a triazine herbicide that is widely used to control broadleaf weeds. Its widespread use over the last 50 years has led to the potential contamination of soils, groundwater, rivers, and lakes. Its main route of complete degradation is via biological means, which is carried out by soil microbiota using a 6-step pathway. The aim of the present study was to investigate whether application of atrazine to soil changes the soil bacterial community. We used 16S rRNA gene sequencing and qPCR to elucidate the microbial community structure and assess the abundance of the atrazine degradation genes atzA, atzD, and trzN in a Brazilian soil. The results obtained showed that the relative abundance of atzA and trzN, encoding triazine-initiating metabolism in Gram-negative and -positive bacteria, respectively, increased in soil during the first weeks following the application of atrazine. In contrast, the abundance of atzD, encoding cyanuric acid amidohydrolase-the fourth step in the pathway-was not related to the atrazine treatment. Moreover, the overall soil bacterial community showed no significant changes after the application of atrazine. Despite this, we observed increases in the relative abundance of bacterial families in the 4 <superscript>th</superscript> and 8 <superscript>th</superscript> weeks following the atrazine treatment, which may have been related to higher copy numbers of atzA and trzN, in part due to the release of nitrogen from the herbicide. The present results revealed that while the application of atrazine may temporarily increase the quantities of the atzA and trzN genes in a Brazilian Red Latosol soil, it does not lead to significant and long-term changes in the bacterial community structure.

Details

Language :
English
ISSN :
1347-4405
Volume :
35
Issue :
2
Database :
MEDLINE
Journal :
Microbes and environments
Publication Type :
Academic Journal
Accession number :
32269200
Full Text :
https://doi.org/10.1264/jsme2.ME19143