Back to Search Start Over

Interface Engineering of MoS 2 -Modified Graphitic Carbon Nitride Nano-photocatalysts for an Efficient Hydrogen Evolution Reaction.

Authors :
Koutsouroubi ED
Vamvasakis I
Papadas IT
Drivas C
Choulis SA
Kennou S
Armatas GS
Source :
ChemPlusChem [Chempluschem] 2020 Jul; Vol. 85 (7), pp. 1379-1388. Date of Electronic Publication: 2020 Apr 08.
Publication Year :
2020

Abstract

Understanding of photochemical charge transfer processes at nanoscale heterojunctions is essential in developing effective catalysts. Here, we utilize a controllable synthesis method and a combination of optical absorption, photoluminescence, and electrochemical impedance spectroscopic studies to investigate the effect of MoS <subscript>2</subscript> nanosheet lateral dimension and edge length size on the photochemical behavior of MoS <subscript>2</subscript> -modified graphitic carbon nitride (g-C <subscript>3</subscript> N <subscript>4</subscript> ) heterojunctions. These nano-heterostructures, which comprise interlayer junctions with variable area (i. e., MoS <subscript>2</subscript> lateral size ranges from 18 nm to 52 nm), provide a size-tunable interfacial charge transfer through the MoS <subscript>2</subscript> /g-C <subscript>3</subscript> N <subscript>4</subscript> contacts, while exposing a large fraction of surface MoS <subscript>2</subscript> edge sites available for the hydrogen evolution reaction. Importantly, modification of g-C <subscript>3</subscript> N <subscript>4</subscript> with MoS <subscript>2</subscript> layers of 39±5 nm lateral size (20 wt % loading) creates interfacial contacts with relatively large number of MoS <subscript>2</subscript> edge sites and efficient electronic transport phenomena, yielding a high photocatalytic H <subscript>2</subscript> -production activity of 1497 μmol h <superscript>-1</superscript> g <subscript>cat</subscript> <superscript>-1</superscript> and an apparent QY of 3.3 % at 410 nm light irradiation. This study thus offers a design strategy to improve light energy conversion efficiency of catalysts by engineering interfaces at the nanoscale in 2D-layered heterojunction materials.<br /> (© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
2192-6506
Volume :
85
Issue :
7
Database :
MEDLINE
Journal :
ChemPlusChem
Publication Type :
Academic Journal
Accession number :
32267088
Full Text :
https://doi.org/10.1002/cplu.202000096