Back to Search Start Over

Virus Bioresistor (VBR) for Detection of Bladder Cancer Marker DJ-1 in Urine at 10 pM in One Minute.

Authors :
Bhasin A
Sanders EC
Ziegler JM
Briggs JS
Drago NP
Attar AM
Santos AM
True MY
Ogata AF
Yoon DV
Majumdar S
Wheat AJ
Patterson SV
Weiss GA
Penner RM
Source :
Analytical chemistry [Anal Chem] 2020 May 05; Vol. 92 (9), pp. 6654-6666. Date of Electronic Publication: 2020 Apr 20.
Publication Year :
2020

Abstract

DJ-1, a 20.7 kDa protein, is overexpressed in people who have bladder cancer (BC). Its elevated concentration in urine allows it to serve as a marker for BC. However, no biosensor for the detection of DJ-1 has been demonstrated. Here, we describe a virus bioresistor ( VBR ) capable of detecting DJ-1 in urine at a concentration of 10 pM in 1 min. The VBR consists of a pair of millimeter-scale gold electrodes that measure the electrical impedance of an ultrathin (≈ 150-200 nm), two-layer polymeric channel. The top layer of this channel (90-105 nm in thickness) consists of an electrodeposited virus-PEDOT (PEDOT is poly(3,4-ethylenedioxythiophene)) composite containing embedded M13 virus particles that are engineered to recognize and bind to the target protein of interest, DJ-1. The bottom layer consists of spin-coated PEDOT-PSS (poly(styrenesulfonate)). Together, these two layers constitute a current divider. We demonstrate here that reducing the thickness of the bottom PEDOT-PSS layer increases its resistance and concentrates the resistance drop of the channel in the top virus-PEDOT layer, thereby increasing the sensitivity of the VBR and enabling the detection of DJ-1. Large signal amplitudes coupled with the inherent simplicity of the VBR sensor design result in high signal-to-noise ( S / N > 100) and excellent sensor-to-sensor reproducibility characterized by coefficients of variation in the range of 3-7% across the DJ-1 binding curve down to a concentration of 30 pM, near the 10 pM limit of detection (LOD), encompassing four orders of magnitude in concentration.

Details

Language :
English
ISSN :
1520-6882
Volume :
92
Issue :
9
Database :
MEDLINE
Journal :
Analytical chemistry
Publication Type :
Academic Journal
Accession number :
32252524
Full Text :
https://doi.org/10.1021/acs.analchem.0c00534