Back to Search
Start Over
Alterations of mitochondrial bioenergetics, dynamics, and morphology support the theory of oxidative damage involvement in autism spectrum disorder.
- Source :
-
FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2020 May; Vol. 34 (5), pp. 6521-6538. Date of Electronic Publication: 2020 Apr 04. - Publication Year :
- 2020
-
Abstract
- Autism spectrum disorder (ASD) has been hypothesized to be a result of the interplay between genetic predisposition and increased vulnerability to early environmental insults. Mitochondrial dysfunctions appear also involved in ASD pathophysiology, but the mechanisms by which such alterations develop are not completely understood. Here, we analyzed ASD primary fibroblasts by measuring mitochondrial bioenergetics, ultrastructural and dynamic parameters to investigate the hypothesis that defects in these pathways could be interconnected phenomena responsible or consequence for the redox imbalance observed in ASD. High levels of 4-hydroxynonenal protein adducts together with increased NADPH (nicotinamide adenine dinucleotide phosphateoxidase) activity and mitochondrial superoxide production coupled with a compromised antioxidant response guided by a defective Nuclear Factor Erythroid 2-Related Factor 2 pathway confirmed an unbalanced redox homeostasis in ASD. Moreover, ASD fibroblasts showed overactive mitochondrial bioenergetics associated with atypical morphology and altered expression of mitochondrial electron transport chain complexes and dynamics-regulating factors. We suggest that many of the changes observed in mitochondria could represent compensatory mechanisms by which ASD cells try to adapt to altered energy demand, possibly resulting from a chronic oxinflammatory status.<br /> (© 2020 The Authors. The FASEB Journal published by Wiley Periodicals, Inc. on behalf of Federation of American Societies for Experimental Biology.)
- Subjects :
- Adolescent
Adult
Autism Spectrum Disorder metabolism
Case-Control Studies
Child
Female
Fibroblasts metabolism
Humans
Male
Mitochondria metabolism
Young Adult
Autism Spectrum Disorder pathology
Energy Metabolism
Fibroblasts pathology
Mitochondria pathology
Mitochondrial Dynamics
Mitochondrial Proteins metabolism
Oxidative Stress
Subjects
Details
- Language :
- English
- ISSN :
- 1530-6860
- Volume :
- 34
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
- Publication Type :
- Academic Journal
- Accession number :
- 32246805
- Full Text :
- https://doi.org/10.1096/fj.201902677R