Back to Search Start Over

Differentiation-inducing factor from the slime mould Dictyostelium discoideum and its analogues. Synthesis, structure and biological activity.

Authors :
Masento MS
Morris HR
Taylor GW
Johnson SJ
Skapski AC
Kay RR
Source :
The Biochemical journal [Biochem J] 1988 Nov 15; Vol. 256 (1), pp. 23-8.
Publication Year :
1988

Abstract

Previous work has led to the identification of a novel class of effector molecules [DIFs (differentiation-inducing factors) 1-3] released from the slime mould Dictyostelium discoideum. These substances induce stalk-cell differentiation in Dictyostelium discoideum and are thought to act as morphogens in the generation of the prestalk/prespore pattern during development. The DIFs are phenylalkan-1-ones, with chloro, hydroxy and methoxy substitution on the benzene ring. DIFs 1-3 and a number of their analogues have been synthesized by using a simple two-step procedure, and each analogue has been characterized by m.s., u.v. and n.m.r. spectroscopy. The crystal structure of synthetic DIF-1 [1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one, was investigated. The specific biological activity of each analogue was determined in a bioassay, where isolated Dictyostelium amoebae are induced to differentiate into stalk cells. The major biologically active substance, DIF-1, caused 50% stalk-cell differentiation at 1.8 x 10(-10) M; the C4 alkyl homologue (DIF-2) and C6 homologue possessed 40 and 16% of the activity of DIF-1 respectively. Further increase or decrease in the alkyl chain length resulted in a marked decrease in specific activity. The pattern of substitution on the benzene ring is a major determinant of bioactivity, since the specific activities of the 2,4-dihydroxy-6-methoxy and trihydroxy analogues were less than 1% of that of DIF-1. Substitution of bromine in DIF-1 had little effect on bioactivity; in contrast the activity of monochloro-DIF-1 (DIF-3) was diminished. There was no evidence for antagonism or synergy between DIF-1 and any of its analogues. This series of analogues will facilitate further studies in the biological effects and mode of action of DIF-1.

Details

Language :
English
ISSN :
0264-6021
Volume :
256
Issue :
1
Database :
MEDLINE
Journal :
The Biochemical journal
Publication Type :
Academic Journal
Accession number :
3223901
Full Text :
https://doi.org/10.1042/bj2560023