Back to Search Start Over

Stress Release Effect of Micro-hole Arrays for Flexible Electrodes and Thin Film Transistors.

Authors :
Lee GJ
Heo SJ
Lee S
Yang JH
Jun BO
Kim HS
Jang JE
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2020 Apr 22; Vol. 12 (16), pp. 19226-19234. Date of Electronic Publication: 2020 Apr 10.
Publication Year :
2020

Abstract

The effects of micro-hole arrays in the thin metal films were studied as a method to release bending stress in flexible electrodes and flexible thin film transistors (TFTs). Interest in flexible electronics is increasing, and many approaches have been suggested to solve the issue of the electrical failure of electrodes or electrical components such as TFTs after repeated bending. Here, we demonstrate a micro-hole array structure as a common solution to release bending stress. Although micro-size cracks were generated and propagated from the hole edges, the cracks stopped within a certain range when enough stress was released. Moreover, since the crack sites were predictable and controllable, a fatal electrical breakdown in a conductive layer such as a metal electrode or the semiconducting junction of a TFT can be prevented by specifically arranging the hole arrays. Thin film layers fabricated without holes suffered an electrical breakdown due to random crack propagation during bending tests. Aluminum thin film electrodes prepared with arrays of 3 μm diameter holes and 25% hole area showed excellent durability after 300,000 bending cycles. The change in resistance was below 3%. The electrical characteristics of an a-IGZO TFT with the micro-hole structure were almost equivalent to a standard a-IGZO TFT. After 10,000 bending cycles, I <subscript>ON</subscript> and the ratio of I <subscript>ON</subscript> / I <subscript>OFF</subscript> remained >10 <superscript>7</superscript> A and ∼10 <superscript>7</superscript> , respectively. Since the effective hole diameter is micrometer in size, fabrication does not require additional process steps or expensive process equipment. Therefore, the approach can be an important way to enhance the reliability of various electrical devices in flexible and wearable applications.

Details

Language :
English
ISSN :
1944-8252
Volume :
12
Issue :
16
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
32237721
Full Text :
https://doi.org/10.1021/acsami.0c02362