Back to Search Start Over

Liposomal TLR9 Agonist Combined with TLR2 Agonist-Fused Antigen Can Modulate Tumor Microenvironment through Dendritic Cells.

Authors :
Shen KY
Liu HY
Yan WL
Wu CC
Lee MH
Leng CH
Liu SJ
Source :
Cancers [Cancers (Basel)] 2020 Mar 28; Vol. 12 (4). Date of Electronic Publication: 2020 Mar 28.
Publication Year :
2020

Abstract

Dendritic cells (DCs) are antigen-presenting cells involved in T cell activation and differentiation to regulate immune responses. Lipoimmunogens can be developed as pharmaceutical lipoproteins for cancer immunotherapy to target DCs via toll-like receptor 2 (TLR2) signaling. Previously, we constructed a lipoimmunogen, a lipidated human papillomavirus (HPV) E7 inactive mutant (rlipoE7m), to inhibit the growth of HPV16 E7-expressing tumor cells in a murine model. Moreover, this antitumor effect could be enhanced by a combinatory treatment with CpG oligodeoxynucleotides (ODN). To improve safety, we developed a rlipoE7m plus DOTAP liposome-encapsulated native phosphodiester CpG (POCpG/DOTAP) treatment to target DCs to enhance antitumor immunity. We optimized the formulation of rlipoE7m and POCpG/DOTAP liposomes to promote conventional DC and plasmacytoid DC maturation in vitro and in vivo. Combination of rlipoE7m plus POCpG/DOTAP could activate conventional DCs and plasmacytoid DCs to augment IL-12 production to promote antitumor responses by intravenous injection. In addition, the combination of rlipoE7m plus POCpG/DOTAP could elicit robust cytotoxic T lymphocytes (CTLs) by intravenous immunization. Interestingly, the combination of rlipoE7m plus POCpG/DOTAP could efficiently inhibit tumor growth via intravenous immunization. Moreover, rlipoE7m plus POCpG/DOTAP combined reduced the number of tumor-infiltrating regulatory T cells dramatically due to downregulation of IL-10 production by DCs. These results showed that the combination of rlipoE7m plus POCpG/DOTAP could target DCs via intravenous delivery to enhance antitumor immunity and reduce the number of immunosuppressive cells in the tumor microenvironment.

Details

Language :
English
ISSN :
2072-6694
Volume :
12
Issue :
4
Database :
MEDLINE
Journal :
Cancers
Publication Type :
Academic Journal
Accession number :
32231003
Full Text :
https://doi.org/10.3390/cancers12040810