Back to Search
Start Over
Adar RNA editing-dependent and -independent effects are required for brain and innate immune functions in Drosophila.
- Source :
-
Nature communications [Nat Commun] 2020 Mar 27; Vol. 11 (1), pp. 1580. Date of Electronic Publication: 2020 Mar 27. - Publication Year :
- 2020
-
Abstract
- ADAR RNA editing enzymes are high-affinity dsRNA-binding proteins that deaminate adenosines to inosines in pre-mRNA hairpins and also exert editing-independent effects. We generated a Drosophila Adar <superscript>E374A</superscript> mutant strain encoding a catalytically inactive Adar with CRISPR/Cas9. We demonstrate that Adar adenosine deamination activity is necessary for normal locomotion and prevents age-dependent neurodegeneration. The catalytically inactive protein, when expressed at a higher than physiological level, can rescue neurodegeneration in Adar mutants, suggesting also editing-independent effects. Furthermore, loss of Adar RNA editing activity leads to innate immune induction, indicating that Drosophila Adar, despite being the homolog of mammalian ADAR2, also has functions similar to mammalian ADAR1. The innate immune induction in fly Adar mutants is suppressed by silencing of Dicer-2, which has a RNA helicase domain similar to MDA5 that senses unedited dsRNAs in mammalian Adar1 mutants. Our work demonstrates that the single Adar enzyme in Drosophila unexpectedly has dual functions.
- Subjects :
- Adenosine Deaminase chemistry
Adenosine Monophosphate metabolism
Aging pathology
Animals
Catalysis
Drosophila Proteins chemistry
Drosophila Proteins metabolism
Gene Expression Regulation
Locomotion
Nerve Degeneration pathology
Point Mutation genetics
Protein Domains
RNA Helicases metabolism
RNA, Messenger genetics
RNA, Messenger metabolism
Ribonuclease III metabolism
Adenosine Deaminase genetics
Brain metabolism
Drosophila Proteins genetics
Drosophila melanogaster genetics
Drosophila melanogaster immunology
Immunity, Innate genetics
RNA Editing genetics
Subjects
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 11
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 32221286
- Full Text :
- https://doi.org/10.1038/s41467-020-15435-1