Back to Search Start Over

Deep Transfer Learning Models for Medical Diabetic Retinopathy Detection.

Authors :
Khalifa NEM
Loey M
Taha MHN
Mohamed HNET
Source :
Acta informatica medica : AIM : journal of the Society for Medical Informatics of Bosnia & Herzegovina : casopis Drustva za medicinsku informatiku BiH [Acta Inform Med] 2019 Dec; Vol. 27 (5), pp. 327-332.
Publication Year :
2019

Abstract

Introduction: Diabetic retinopathy (DR) is the most common diabetic eye disease worldwide and a leading cause of blindness. The number of diabetic patients will increase to 552 million by 2034, as per the International Diabetes Federation (IDF).<br />Aim: With advances in computer science techniques, such as artificial intelligence (AI) and deep learning (DL), opportunities for the detection of DR at the early stages have increased. This increase means that the chances of recovery will increase and the possibility of vision loss in patients will be reduced in the future.<br />Methods: In this paper, deep transfer learning models for medical DR detection were investigated. The DL models were trained and tested over the Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 dataset. According to literature surveys, this research is considered one the first studies to use of the APTOS 2019 dataset, as it was freshly published in the second quarter of 2019. The selected deep transfer models in this research were AlexNet, Res-Net18, SqueezeNet, GoogleNet, VGG16, and VGG19. These models were selected, as they consist of a small number of layers when compared to larger models, such as DenseNet and InceptionResNet. Data augmentation techniques were used to render the models more robust and to overcome the overfitting problem.<br />Results: The testing accuracy and performance metrics, such as the precision, recall, and F1 score, were calculated to prove the robustness of the selected models. The AlexNet model achieved the highest testing accuracy at 97.9%. In addition, the achieved performance metrics strengthened our achieved results. Moreover, AlexNet has a minimum number of layers, which decreases the training time and the computational complexity.<br />Competing Interests: There are no conflicts of interest.<br /> (© 2019 Nour Eldeen M. Khalifa, Mohamed Loey, Mohamed Hamed N. Taha, Hamed Nasr Eldin T. Mohamed.)

Details

Language :
English
ISSN :
0353-8109
Volume :
27
Issue :
5
Database :
MEDLINE
Journal :
Acta informatica medica : AIM : journal of the Society for Medical Informatics of Bosnia & Herzegovina : casopis Drustva za medicinsku informatiku BiH
Publication Type :
Academic Journal
Accession number :
32210500
Full Text :
https://doi.org/10.5455/aim.2019.27.327-332