Back to Search
Start Over
Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity.
- Source :
-
Nucleic acids research [Nucleic Acids Res] 2020 May 07; Vol. 48 (8), pp. 4418-4434. - Publication Year :
- 2020
-
Abstract
- Type III CRISPR-Cas prokaryotic immune systems provide anti-viral and anti-plasmid immunity via a dual mechanism of RNA and DNA destruction. Upon target RNA interaction, Type III crRNP effector complexes become activated to cleave both target RNA (via Cas7) and target DNA (via Cas10). Moreover, trans-acting endoribonucleases, Csx1 or Csm6, can promote the Type III immune response by destroying both invader and host RNAs. Here, we characterize how the RNase and DNase activities associated with Type III-B immunity in Pyrococcus furiosus (Pfu) are regulated by target RNA features and second messenger signaling events. In vivo mutational analyses reveal that either the DNase activity of Cas10 or the RNase activity of Csx1 can effectively direct successful anti-plasmid immunity. Biochemical analyses confirmed that the Cas10 Palm domains convert ATP into cyclic oligoadenylate (cOA) compounds that activate the ribonuclease activity of Pfu Csx1. Furthermore, we show that the HEPN domain of the adenosine-specific endoribonuclease, Pfu Csx1, degrades cOA signaling molecules to provide an auto-inhibitory off-switch of Csx1 activation. Activation of both the DNase and cOA generation activities require target RNA binding and recognition of distinct target RNA 3' protospacer flanking sequences. Our results highlight the complex regulatory mechanisms controlling Type III CRISPR immunity.<br /> (© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Subjects :
- Archaeal Proteins chemistry
Catalytic Domain
Endoribonucleases chemistry
Plasmids
Protein Domains
Pyrococcus furiosus genetics
Pyrococcus furiosus immunology
Pyrococcus furiosus metabolism
Ribonucleoproteins metabolism
Second Messenger Systems
Archaeal Proteins metabolism
CRISPR-Associated Proteins metabolism
CRISPR-Cas Systems
Deoxyribonucleases metabolism
Endoribonucleases metabolism
Pyrococcus furiosus enzymology
Subjects
Details
- Language :
- English
- ISSN :
- 1362-4962
- Volume :
- 48
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Nucleic acids research
- Publication Type :
- Academic Journal
- Accession number :
- 32198888
- Full Text :
- https://doi.org/10.1093/nar/gkaa176