Back to Search Start Over

Isolation and Characterization of Ochrobactrum tritici for Penicillin V Potassium Degradation.

Authors :
Wang P
Shen C
Xu K
Cong Q
Dong Z
Li L
Guo J
Lu J
Liu S
Source :
MSphere [mSphere] 2020 Mar 18; Vol. 5 (2). Date of Electronic Publication: 2020 Mar 18.
Publication Year :
2020

Abstract

Substantial concentrations of penicillin V potassium (PVK) have been found in livestock manure, soil, and wastewater effluents, which may pose potential threats to human health and contribute to the emergence of penicillin-resistant bacterial strains. In this study, bacterial strains capable of degrading PVK were isolated from sludge and characterized. Strain X-2 was selected for biodegradation of PVK. Based on morphological observations and 16S rRNA gene sequencing, strain X-2 was identified as an Ochrobactrum tritici strain. To enhance the PVK degradation ability of PVK, a whole-cell biodegradation process of Ochrobactrum tritici X-2 was established and optimized. In the whole-cell biodegradation process, the optimal temperature and pH were 30°C and 7.0, respectively. Under the optimized conditions, the degradation rate using 0.5 mg/ml PVK reached 100% within 3 h. During biodegradation, two major metabolites were detected: penicilloic acid and phenolic acid. The present study provides a novel method for the biodegradation of PVK using Ochrobactrum tritici strains, which represent promising candidates for the industrial biodegradation of PVK. IMPORTANCE Substantial concentrations of penicillin V potassium (PVK) have been found in the environment, which may pose potential threats to human health and contribute to the emergence of penicillin-resistant bacterial strains. In this study, antibiotic-degrading bacterial strains for PVK were isolated from sludge and characterized. Ochrobactrum tritici was selected for the biodegradation of PVK with high efficiency. To enhance its PVK degradation ability, a whole-cell biodegradation process was established and optimized using Ochrobactrum tritici The degradation rate with 0.5 mg/ml PVK reached 100% within 3 h. The potential biodegradation pathway was also investigated. To the best of our knowledge, the present study provides new insights into the biodegradation of PVK using an Ochrobactrum tritici strain, a promising candidate strain for the industrial biodegradation of β-lactam antibiotics.<br /> (Copyright © 2020 Wang et al.)

Details

Language :
English
ISSN :
2379-5042
Volume :
5
Issue :
2
Database :
MEDLINE
Journal :
MSphere
Publication Type :
Academic Journal
Accession number :
32188746
Full Text :
https://doi.org/10.1128/mSphere.00058-20