Back to Search
Start Over
Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize).
- Source :
-
Phytochemistry [Phytochemistry] 2020 Jun; Vol. 174, pp. 112334. Date of Electronic Publication: 2020 Mar 13. - Publication Year :
- 2020
-
Abstract
- Green leaf volatiles (GLVs) and jasmonates (JAs) are the best-characterized groups of fatty acid-derived oxylipin signals that regulate wound-associated defenses. Beyond these two major groups of defense signals, plants produce an array of oxylipins in response to wounding, which possess potent signaling and/or insecticidal activities. In this study, we assessed the relative contribution of JAs and GLVs to wound-induced systemic signaling and the associated regulation of oxylipins in local and systemic tissues of maize (Zea mays). For this, we utilized GLV- and JA-deficient mutants, lox10 single and opr7opr8 double mutants, respectively, and profiled oxylipins in untreated leaves and roots, and in locally wounded and systemic leaves. In contrast to the studies in dicots, no systemic induction of JAs was observed in maize. Instead, a JA precursor, 12-OPDA, as well as ketols and C <subscript>12/13</subscript> oxo-acids derived from 13-lipoxygenases (LOXs), were preferentially induced in both locally wounded and systemic unwounded leaves. Several 9-LOX-derived oxylipins (9-oxylipins) including hydroxides and ketones were also significantly induced locally. JA and JA-isoleucine (JA-Ile) were rapidly induced within 0.5 h, and were followed by a second increase in local tissue 4 h after wounding. GLV-deficient lox10 mutants displayed reduced levels of most 13-oxylipins, and elevated levels of several 9-oxylipins and the a-dioxygenase (DOX) product, 2-HOD. lox10 mutants were completely devoid of C <subscript>6</subscript> volatiles and their C <subscript>12</subscript> counterparts, and greatly decreased in C <subscript>5</subscript> volatiles and their C <subscript>13</subscript> oxo-acid counterparts. Thus, in addition to being the sole LOX isoform providing substrate for GLV synthesis, LOX10 is a major 13-LOX that provides substrate to several LOX branches that produce an array of 13-oxylipin products, including C <subscript>5</subscript> volatiles. Interestingly, the rapid JA and JA-Ile increase at 0.5-2 h post-wounding was only moderately affected by the LOX10 mutation, while significantly reduced levels were observed at 4 h post-wounding. Combined with the previous findings that GLVs activate JA biosynthesis, these results suggest that both LOX10-derived substrates and/or GLVs are involved in the large second phase of JA synthesis proximal to the wound. Analyses of opr7opr8 mutants revealed that wound-induced oxylipin responses were positively regulated by JA signaling. The local and systemic accumulation of SA was not altered in the two mutants. Collectively, our results identified a subset of oxylipins strongly induced in wounded and systemic leaves, but their impact on insect defenses remain elusive. The lack of systemic induction of JAs points to substantial difference between systemic wound responses in studied dicots and maize. Our results show that GLV-deficiency and reduced JA in lox10 mutants had a greater impact on wound-induced local and systemic tissue oxylipin responses compared to the solely JA-deficient opr7opr8 double mutants. This suggests that GLVs or other LOX10-derived products heavily contribute to overall basal and wound-induced oxylipin responses. The specific roles of the GLV- and/or JA-dependent oxylipins in wound responses and defense remain to be further investigated by a combination of multiple orders of oxylipin-deficient mutants.<br />Competing Interests: Declaration of competing interest None.<br /> (Copyright © 2020 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-3700
- Volume :
- 174
- Database :
- MEDLINE
- Journal :
- Phytochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 32172019
- Full Text :
- https://doi.org/10.1016/j.phytochem.2020.112334