Back to Search Start Over

Adélie penguin colonies as indicators of brominated flame retardants (BFRs) in East Antarctica.

Authors :
Lewis PJ
McGrath TJ
Emmerson L
Allinson G
Shimeta J
Source :
Chemosphere [Chemosphere] 2020 Jul; Vol. 250, pp. 126320. Date of Electronic Publication: 2020 Feb 24.
Publication Year :
2020

Abstract

While persistent organic pollutant (POP) contamination within Antarctica is largely caused by long-range atmospheric transport (LRAT), Antarctic research bases have been shown to be local sources of POPs such as brominated flame retardants (BFRs). This study compared concentrations of seven polybrominated diphenyl ethers (PBDE) congeners and five novel flame retardants (NBFRs) found in Adélie penguin (Pygoscelis adeliae) colony soils near the Australian research stations, Mawson and Davis, to assess the stations as local sources of these contaminants and provide a much needed baseline for contamination of BFRs in East Antarctica. Soil samples (n = 46) were collected from Adélie colonies at close proximity to the research stations as well as further afield during the 2016-17 austral summer. Samples were analysed using selective pressurised liquid extraction (S-PLE) and gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). PBDEs (BDE-28, -47, -99, -100, -153, -154 and -183) were detected in 45/46 samples with ∑ <subscript>7</subscript> PBDE concentrations ranging from <0.01 to 1.63 ng/g dry weight (dw) and NBFRs (2,3,4,5,6-pentabromotoluene (PBT), 2,3,4,5,6-pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2,4,6-tribromophenoxy) ethane (BTBPE)) detected in 20/46 samples, with a range of ∑ <subscript>5</subscript> NBFR from not detected (ND) to 0.16 ng/g dw. Soils taken from around the Davis and Mawson research stations were more highly contaminated (n = 10) than penguin colonies (n = 27) and control areas not affiliated with breeding seabirds (n = 8). The most common congener detected was BDE-99, reflecting inputs from LRAT. However, the congener profiles of station soils supported the hypothesis that research stations are a local source of PBDEs to the Antarctic environment. In addition, the NBFR pentabromoethylbenzene (PBEB) was quantified for the first time in Antarctic soils, providing essential information for baseline contamination within the region and highlighting the need for ongoing monitoring as global regulations for the use of BFRs continuously change.<br /> (Copyright © 2020 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
250
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
32126331
Full Text :
https://doi.org/10.1016/j.chemosphere.2020.126320