Back to Search Start Over

Green tea (Camellia sinensis) for the prevention of cancer.

Authors :
Filippini T
Malavolti M
Borrelli F
Izzo AA
Fairweather-Tait SJ
Horneber M
Vinceti M
Source :
The Cochrane database of systematic reviews [Cochrane Database Syst Rev] 2020 Mar 02; Vol. 3. Cochrane AN: CD005004. Date of Electronic Publication: 2020 Mar 02.
Publication Year :
2020

Abstract

Background: This review is an update of a previously published review in the Cochrane Database of Systematic Reviews (2009, Issue 3).Tea is one of the most commonly consumed beverages worldwide. Teas from the plant Camellia sinensis can be grouped into green, black and oolong tea, and drinking habits vary cross-culturally. C sinensis contains polyphenols, one subgroup being catechins. Catechins are powerful antioxidants, and laboratory studies have suggested that these compounds may inhibit cancer cell proliferation. Some experimental and nonexperimental epidemiological studies have suggested that green tea may have cancer-preventative effects.<br />Objectives: To assess possible associations between green tea consumption and the risk of cancer incidence and mortality as primary outcomes, and safety data and quality of life as secondary outcomes.<br />Search Methods: We searched eligible studies up to January 2019 in CENTRAL, MEDLINE, Embase, ClinicalTrials.gov, and reference lists of previous reviews and included studies.<br />Selection Criteria: We included all epidemiological studies, experimental (i.e. randomised controlled trials (RCTs)) and nonexperimental (non-randomised studies, i.e. observational studies with both cohort and case-control design) that investigated the association of green tea consumption with cancer risk or quality of life, or both.<br />Data Collection and Analysis: Two or more review authors independently applied the study criteria, extracted data and assessed methodological quality of studies. We summarised the results according to diagnosis of cancer type.<br />Main Results: In this review update, we included in total 142 completed studies (11 experimental and 131 nonexperimental) and two ongoing studies. This is an additional 10 experimental and 85 nonexperimental studies from those included in the previous version of the review. Eleven experimental studies allocated a total of 1795 participants to either green tea extract or placebo, all demonstrating an overall high methodological quality based on 'Risk of bias' assessment. For incident prostate cancer, the summary risk ratio (RR) in the green tea-supplemented participants was 0.50 (95% confidence interval (CI) 0.18 to 1.36), based on three studies and involving 201 participants (low-certainty evidence). The summary RR for gynaecological cancer was 1.50 (95% CI 0.41 to 5.48; 2 studies, 1157 participants; low-certainty evidence). No evidence of effect of non-melanoma skin cancer emerged (summary RR 1.00, 95% CI 0.06 to 15.92; 1 study, 1075 participants; low-certainty evidence). In addition, adverse effects of green tea extract intake were reported, including gastrointestinal disorders, elevation of liver enzymes, and, more rarely, insomnia, raised blood pressure and skin/subcutaneous reactions. Consumption of green tea extracts induced a slight improvement in quality of life, compared with placebo, based on three experimental studies. In nonexperimental studies, we included over 1,100,000 participants from 46 cohort studies and 85 case-control studies, which were on average of intermediate to high methodological quality based on Newcastle-Ottawa Scale 'Risk of bias' assessment. When comparing the highest intake of green tea with the lowest, we found a lower overall cancer incidence (summary RR 0.83, 95% CI 0.65 to 1.07), based on three studies, involving 52,479 participants (low-certainty evidence). Conversely, we found no association between green tea consumption and cancer-related mortality (summary RR 0.99, 95% CI 0.91 to 1.07), based on eight studies and 504,366 participants (low-certainty evidence). For most of the site-specific cancers we observed a decreased RR in the highest category of green tea consumption compared with the lowest one. After stratifying the analysis according to study design, we found strongly conflicting results for some cancer sites: oesophageal, prostate and urinary tract cancer, and leukaemia showed an increased RR in cohort studies and a decreased RR or no difference in case-control studies.<br />Authors' Conclusions: Overall, findings from experimental and nonexperimental epidemiological studies yielded inconsistent results, thus providing limited evidence for the beneficial effect of green tea consumption on the overall risk of cancer or on specific cancer sites. Some evidence of a beneficial effect of green tea at some cancer sites emerged from the RCTs and from case-control studies, but their methodological limitations, such as the low number and size of the studies, and the inconsistencies with the results of cohort studies, limit the interpretability of the RR estimates. The studies also indicated the occurrence of several side effects associated with high intakes of green tea. In addition, the majority of included studies were carried out in Asian populations characterised by a high intake of green tea, thus limiting the generalisability of the findings to other populations. Well conducted and adequately powered RCTs would be needed to draw conclusions on the possible beneficial effects of green tea consumption on cancer risk.<br /> (Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.)

Details

Language :
English
ISSN :
1469-493X
Volume :
3
Database :
MEDLINE
Journal :
The Cochrane database of systematic reviews
Publication Type :
Academic Journal
Accession number :
32118296
Full Text :
https://doi.org/10.1002/14651858.CD005004.pub3