Back to Search Start Over

Cytochrome 450 metabolites of arachidonic acid (20-HETE, 11,12-EET and 14,15-EET) promote pheochromocytoma cell growth and tumor associated angiogenesis.

Authors :
Colombero C
Cárdenas S
Venara M
Martin A
Pennisi P
Barontini M
Nowicki S
Source :
Biochimie [Biochimie] 2020 Apr - May; Vol. 171-172, pp. 147-157. Date of Electronic Publication: 2020 Feb 24.
Publication Year :
2020

Abstract

The importance of cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites, 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) as tumor growth promotors has already been described in several cancer types. The aim of this study was to evaluate the role of these compounds in the biology of pheochromocytoma/paraganglioma. These tumors originate from chromaffin cells derived from adrenal medulla (pheochromocytomas) or extra-adrenal autonomic paraganglia (paragangliomas), and they represent the most common hereditary endocrine neoplasia. According to mutations in the driver genes, these tumors are divided in two clusters: pseudo-hypoxic and kinase-signaling EETs, but not 20-HETE, exhibited a potent ability to sustain growth in a murine pheochromocytoma cell line (MPC) in vitro, EETs promoted an increase in cell proliferation and a decrease in cell apoptosis. In a mouse model of pheochromocytoma, the inhibition of CYP-mediated AA metabolism using 1-aminobenzotriazol resulted in slower tumor growth, a decreased vascularization, and a lower final volume. Also, the expression of AA-metabolizing CYP monooxygenases was detected in tumor samples from human origin, being their apparent abundance and the production of both metabolites higher in tumors from the kinase-signaling cluster. This is the first evidence of the importance of CYP- derived AA metabolites in the biology and development of pheochromocytoma/paraganglioma tumors.<br /> (Copyright © 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.)

Details

Language :
English
ISSN :
1638-6183
Volume :
171-172
Database :
MEDLINE
Journal :
Biochimie
Publication Type :
Academic Journal
Accession number :
32105813
Full Text :
https://doi.org/10.1016/j.biochi.2020.02.014