Back to Search
Start Over
Modulation of Th17 Proliferation and IL-17A Gene Expression by Acetylated Form of Apigenin in Patients with Multiple Sclerosis.
- Source :
-
Immunological investigations [Immunol Invest] 2021 Feb; Vol. 50 (2-3), pp. 216-229. Date of Electronic Publication: 2020 Feb 26. - Publication Year :
- 2021
-
Abstract
- The presence of Th17 cells in CNS lesion of MS patients due to their inflammatory cytokines secretion is in line with the deterioration of the disease. Currently, the use of natural compounds with anti-inflammatory properties such as flavonoids have been considered to reduce inflammation in these patients, but the remaining issue is how deliver these compounds to the site of inflammation. Acetylation is a way to better uptake compound by cells and cross through cellular layers with tight junctions. This study aimed to investigate the in vitro effects of the Apigenin 3-Acetate on Th17 cells of MS patients and compare its efficacy with Apigenin and Methyl Prednisolone Acetate. IC50 for Apigenin 3-Acetate, and Methyl Prednisolone Acetate were determined using three healthy volunteers. The peripheral blood mononuclear cells (PBMCs) of five MS patients were isolated and co-cultured with a selected dose of Apigenin, Apigenin 3-Acetate, and Methyl Prednisolone Acetate for 48 hr, and then theproliferation of Th17 cells in isolated PBMCs was assessed by flow cytometry. The levels of RAR-related orphan receptor (RORC) and IL-17A expression were also determined by quantitative real-time PCR. The results showed that Apigenin 3-Acetate inhibited Th17 cells proliferation (P value: 0.018) at 80 µM concentration after 48 hr. Additionally, IL-17A gene expression significantly (P value≤ 0.0001) inhibited by Apigenin, Apigenin 3-Acetate and Methyl Prednisolone Acetate in 80 µM, 80 µM and 2.5 µM (selected dose in IC50 determination) respectively These results demonstrate that Acetate increases anti-inflammatory effects of Apigenin on Th17 cells.
- Subjects :
- Acetylation
Adult
Apigenin chemistry
Cell Proliferation
Cells, Cultured
Female
Gene Expression Regulation
Humans
Immunomodulation
Interleukin-17 genetics
Male
Middle Aged
Prednisolone analogs & derivatives
Prednisolone therapeutic use
Young Adult
Anti-Inflammatory Agents therapeutic use
Apigenin therapeutic use
Interleukin-17 metabolism
Multiple Sclerosis immunology
Th17 Cells immunology
Subjects
Details
- Language :
- English
- ISSN :
- 1532-4311
- Volume :
- 50
- Issue :
- 2-3
- Database :
- MEDLINE
- Journal :
- Immunological investigations
- Publication Type :
- Academic Journal
- Accession number :
- 32100582
- Full Text :
- https://doi.org/10.1080/08820139.2020.1726381