Back to Search Start Over

Uncovering the Potential of M1-Site-Activated NASICON Cathodes for Zn-Ion Batteries.

Authors :
Hu P
Zou Z
Sun X
Wang D
Ma J
Kong Q
Xiao D
Gu L
Zhou X
Zhao J
Dong S
He B
Avdeev M
Shi S
Cui G
Chen L
Source :
Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2020 Apr; Vol. 32 (14), pp. e1907526. Date of Electronic Publication: 2020 Feb 20.
Publication Year :
2020

Abstract

There is a long-standing consciousness that the rhombohedral NASICON-type compounds as promising cathodes for Li <superscript>+</superscript> /Na <superscript>+</superscript> batteries should have inactive M1(6b) sites with ion (de)intercalation occurring only in the M2 (18e) sites. Of particular significance is that M1 sites active for charge/discharge are commonly considered undesirable because the ion diffusion tends to be disrupted by the irregular occupation of channels, which accelerates the deterioration of battery. However, it is found that the structural stability can be substantially improved by the mixed occupation of Na <superscript>+</superscript> /Zn <superscript>2+</superscript> at both M1 and M2 when using NaV <subscript>2</subscript> (PO <subscript>4</subscript> ) <subscript>3</subscript> (NVP) as a cathode for Zn-ion batteries. The results of atomic-scale scanning transmission electron microscopy, analysis of ab initio molecular dynamics simulations, and an accurate bond-valence-based structural model reveal that the improvement is due to the facile migration of Zn <superscript>2+</superscript> in NVP, which is enabled by a concerted Na <superscript>+</superscript> /Zn <superscript>2+</superscript> transfer mechanism. In addition, significant improvement of the electronic conductivity and mechanical properties is achieved in Zn <superscript>2+</superscript> -intercalated ZnNaV <subscript>2</subscript> (PO <subscript>4</subscript> ) <subscript>3</subscript> in comparison with those of Na <subscript>3</subscript> V <subscript>2</subscript> (PO <subscript>4</subscript> ) <subscript>3</subscript> . This work not only provides in-depth insight into Zn <superscript>2+</superscript> intercalation and dynamics in NVP unlocked by activating the M1 sites, but also opens a new route toward design of improved NASICON cathodes.<br /> (© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
1521-4095
Volume :
32
Issue :
14
Database :
MEDLINE
Journal :
Advanced materials (Deerfield Beach, Fla.)
Publication Type :
Academic Journal
Accession number :
32080916
Full Text :
https://doi.org/10.1002/adma.201907526