Back to Search
Start Over
Dynamic Membrane Localization of RNase Y in Bacillus subtilis.
- Source :
-
MBio [mBio] 2020 Feb 18; Vol. 11 (1). Date of Electronic Publication: 2020 Feb 18. - Publication Year :
- 2020
-
Abstract
- Metabolic turnover of mRNA is fundamental to the control of gene expression in all organisms, notably in fast-adapting prokaryotes. In many bacteria, RNase Y initiates global mRNA decay via an endonucleolytic cleavage, as shown in the Gram-positive model organism Bacillus subtilis This enzyme is tethered to the inner cell membrane, a pseudocompartmentalization coherent with its task of initiating mRNA cleavage/maturation of mRNAs that are translated at the cell periphery. Here, we used total internal reflection fluorescence microscopy (TIRFm) and single-particle tracking (SPT) to visualize RNase Y and analyze its distribution and dynamics in living cells. We find that RNase Y diffuses rapidly at the membrane in the form of dynamic short-lived foci. Unlike RNase E, the major decay-initiating RNase in Escherichia coli , the formation of foci is not dependent on the presence of RNA substrates. On the contrary, RNase Y foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. The Y-complex of three proteins (YaaT, YlbF, and YmcA) has previously been shown to play an important role for RNase Y activity in vivo We demonstrate that Y-complex mutations have an effect similar to but much stronger than that of depletion of RNA in increasing the number and size of RNase Y foci at the membrane. Our data suggest that the Y-complex shifts the assembly status of RNase Y toward fewer and smaller complexes, thereby increasing cleavage efficiency of complex substrates like polycistronic mRNAs. IMPORTANCE All living organisms must degrade mRNA to adapt gene expression to changing environments. In bacteria, initiation of mRNA decay generally occurs through an endonucleolytic cleavage. In the Gram-positive model organism Bacillus subtilis and probably many other bacteria, the key enzyme for this task is RNase Y, which is anchored at the inner cell membrane. While this pseudocompartmentalization appears coherent with translation occurring primarily at the cell periphery, our knowledge on the distribution and dynamics of RNase Y in living cells is very scarce. Here, we show that RNase Y moves rapidly along the membrane in the form of dynamic short-lived foci. These foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. This contrasts with RNase E, the major decay-initiating RNase in E. coli , where it was shown that formation of foci is dependent on the presence of RNA substrates. We also show that a protein complex (Y-complex) known to influence the specificity of RNase Y activity in vivo is capable of shifting the assembly status of RNase Y toward fewer and smaller complexes. This highlights fundamental differences between RNase E- and RNase Y-based degradation machineries.<br /> (Copyright © 2020 Hamouche et al.)
- Subjects :
- Bacillus subtilis cytology
Bacillus subtilis genetics
Bacillus subtilis metabolism
Bacterial Proteins genetics
Bacterial Proteins metabolism
Endoribonucleases
Escherichia coli genetics
Gene Expression Regulation, Bacterial
Microscopy, Fluorescence
RNA, Bacterial metabolism
RNA, Messenger metabolism
Ribonucleases genetics
Bacillus subtilis enzymology
Cell Membrane metabolism
Membrane Proteins metabolism
RNA Stability physiology
Ribonucleases metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2150-7511
- Volume :
- 11
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- MBio
- Publication Type :
- Academic Journal
- Accession number :
- 32071272
- Full Text :
- https://doi.org/10.1128/mBio.03337-19