Back to Search
Start Over
Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: Ecological implications for the future.
- Source :
-
The Science of the total environment [Sci Total Environ] 2020 May 15; Vol. 717, pp. 137101. Date of Electronic Publication: 2020 Feb 04. - Publication Year :
- 2020
-
Abstract
- Mountain glacier shrinkage represents a major effect of the current global warming and 80-100% of the Alpine glaciers are predicted to vanish within the next few decades. As the thawing rate of mountain permafrost ice is much lower than for glacier ice, a shift from glacial to periglacial dynamics is predicted for Alpine landscapes during the 21st century. Despite the growing literature on the impacts of deglaciation on Alpine hydrology and ecosystems, chemical and biological features of waters emerging from Alpine rock glaciers (i.e. permafrost landforms composed by a mixture of ice and debris) have been poorly investigated so far, and knowledge on microbial biodiversity of headwaters is still sparse. A set of glacier-, rock glacier- and groundwater/precipitation-fed streams was investigated in the Italian Central Alps in late summer 2016, aiming at exploring bacterial community composition and diversity in epilithic and surface sediment biofilm and at verifying the hypothesis that rock glacier-fed headwaters represent peculiar ecosystems from both a chemical and biological point of view. Rock glacier-fed waters showed high values of electrical conductivity and trace elements related to their bedrock lithology, and their highly diverse bacterial assemblages significantly differed from those detected in glacier-fed streams. Bacterial taxonomic composition appeared to be mainly related to water and substrate type, as well as to water chemistry, the latter including concentrations of nutrients and trace metals. The results of this study confirm the chemical and biological peculiarity of rock glacier-fed waters compared to glacial waters, and suggest a potential driving role of thawing permafrost in modulating future ecological traits of Alpine headwaters within the context of progressing deglaciation.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Subjects :
- Biodiversity
Italy
Rivers
Ecosystem
Ice Cover
Subjects
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 717
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 32065887
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2020.137101