Back to Search Start Over

Oxidative stress accelerates synaptic glutamate dyshomeostasis and NMDARs disorder during methylmercury-induced neuronal apoptosis in rat cerebral cortex.

Authors :
Yang T
Xu Z
Liu W
Xu B
Deng Y
Source :
Environmental toxicology [Environ Toxicol] 2020 Jun; Vol. 35 (6), pp. 683-696. Date of Electronic Publication: 2020 Feb 15.
Publication Year :
2020

Abstract

Methylmercury (MeHg) is a potent neurotoxin,which leads to a wide range of intracellular effects. The molecular mechanismsassociated to MeHg-induced neurotoxicity have not been fully understood.Oxidative stress, as well as synaptic glutamate (Glu) dyshomeostasis have beenidentified as two critical mechanisms during MeHg-mediated cytotoxicity. Here,we developed a rat model of MeHg poisoning to evaluate its neurotoxic effectsby focusing on cellular oxidative stress and synaptic Glu disruption. Inaddition, we investigated the neuroprotective role of alpha-lipoic acid (α-LA), a natural antioxidant, todeeply explore the underlying interaction between them. Fifty-six rats wererandomly divided into four groups: saline control, MeHg treatment (4 or 12μmol/kg MeHg), and α-LApre-treatment (35 μmol/kg α-LA+12μmol/kg MeHg). Rats exposed to 12 μmol/kg MeHg induced neuronal oxidativestress, with ROS accumulation and cellular antioxidant system impairment. Nrf2 andxCT pathways were activated with MeHg treatment. The enzymatic or non-enzymaticof cellular GSH synthesis were also disrupted by MeHg. On the other hand, the abnormalactivities of GS and PAG disturbed the "Glu-Gln cycle", leading to NMDARsover-activation, Ca2+ overload, and the calpain activation, which acceleratedNMDARs degradation. Meanwhile, the high expressions of phospho-p44/42 MAPK,phospho-p38 MAPK, phospho-CREB, and the high levels of caspase 3 and Bax/Bcl-2 finallyindicated the neuronal apoptosis after MeHg exposure. Pre-treatment with α-LA significantly preventedMeHg-induced neurotoxicity. In conclusion, the oxidative stress and synapticGlu dyshomeostasis contributed to MeHg-induced neuronal apoptosis. Alpha-LAattenuated these toxic effects through mechanisms of anti-oxidation andindirect Glu dyshomeostasis prevention.<br /> (© 2020 Wiley Periodicals, Inc.)

Details

Language :
English
ISSN :
1522-7278
Volume :
35
Issue :
6
Database :
MEDLINE
Journal :
Environmental toxicology
Publication Type :
Academic Journal
Accession number :
32061141
Full Text :
https://doi.org/10.1002/tox.22904