Back to Search Start Over

Mobility Tuning of Polyrotaxane Surfaces to Stimulate Myocyte Differentiation.

Authors :
Sekiya-Aoyama R
Arisaka Y
Yui N
Source :
Macromolecular bioscience [Macromol Biosci] 2020 Apr; Vol. 20 (4), pp. e1900424. Date of Electronic Publication: 2020 Feb 14.
Publication Year :
2020

Abstract

Polyrotaxanes, consisting of poly(ethylene glycol) and α-cyclodextrins, are mechanically interlocked supermolecules. The structure allows α-cyclodextrins to move along the polymer, referred to as molecular mobility. Here, polyrotaxane-based triblock copolymers, composed of polyrotaxanes with different degrees of methylation and poly(benzyl methacrylate) at both terminals, are coated on culture surfaces to fabricate dynamic biointerfaces for myocyte differentiation. The molecular mobility increases with the degree of methylation and the contact angle hysteresis of water droplets and air bubbles. When the mouse myoblast cell line C2C12 is cultured on methylated polyrotaxane surfaces, the expression levels of myogenesis-related genes, myogenin (Myog) and myosin heavy chain (Myhc) are altered by the degree of methylation. Polyrotaxane surfaces with intermediate degrees of methylation promote the highest expression levels among all the surfaces. The polyrotaxane surface provides an appropriate environment for myocyte differentiation by accurately adjusting the degrees of methylation.<br /> (© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
1616-5195
Volume :
20
Issue :
4
Database :
MEDLINE
Journal :
Macromolecular bioscience
Publication Type :
Academic Journal
Accession number :
32058659
Full Text :
https://doi.org/10.1002/mabi.201900424