Back to Search
Start Over
Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment.
- Source :
-
Theranostics [Theranostics] 2020 Jan 01; Vol. 10 (4), pp. 1884-1909. Date of Electronic Publication: 2020 Jan 01 (Print Publication: 2020). - Publication Year :
- 2020
-
Abstract
- Genetic and phenotypic tumour heterogeneity is an important cause of therapy resistance. Moreover, non-uniform spatial drug distribution in cancer treatment may cause pseudo-resistance, meaning that a treatment is ineffective because the drug does not reach its target at sufficient concentrations. Together with tumour heterogeneity, non-uniform drug distribution causes "therapy heterogeneity": a spatially heterogeneous treatment effect. Spatial heterogeneity in drug distribution occurs on all scales ranging from interpatient differences to intratumour differences on tissue or cellular scale. Nanomedicine aims to improve the balance between efficacy and safety of drugs by targeting drug-loaded nanoparticles specifically to tumours. Spatial heterogeneity in nanoparticle and payload distribution could be an important factor that limits their efficacy in patients. Therefore, imaging spatial nanoparticle distribution and imaging the tumour environment giving rise to this distribution could help understand (lack of) clinical success of nanomedicine. Imaging the nanoparticle, drug and tumour environment can lead to improvements of new nanotherapies, increase understanding of underlying mechanisms of heterogeneous distribution, facilitate patient selection for nanotherapies and help assess the effect of treatments that aim to reduce heterogeneity in nanoparticle distribution. In this review, we discuss three groups of imaging modalities applied in nanomedicine research: non-invasive clinical imaging methods (nuclear imaging, MRI, CT, ultrasound), optical imaging and mass spectrometry imaging. Because each imaging modality provides information at a different scale and has its own strengths and weaknesses, choosing wisely and combining modalities will lead to a wealth of information that will help bring nanomedicine forward.<br />Competing Interests: Competing Interests: The authors have declared that no competing interest exists.<br /> (© The author(s).)
- Subjects :
- Animals
Drug Resistance, Neoplasm genetics
Environment
Humans
Magnetic Resonance Imaging methods
Mass Spectrometry methods
Mice
Nanoparticles chemistry
Neoplasms diagnostic imaging
Neoplasms genetics
Optical Imaging methods
Patient Selection
Pharmaceutical Preparations
Rats
Tomography, X-Ray Computed methods
Ultrasonography methods
Drug Delivery Systems methods
Multimodal Imaging methods
Nanomedicine methods
Nanoparticles administration & dosage
Neoplasms drug therapy
Subjects
Details
- Language :
- English
- ISSN :
- 1838-7640
- Volume :
- 10
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Theranostics
- Publication Type :
- Academic Journal
- Accession number :
- 32042343
- Full Text :
- https://doi.org/10.7150/thno.38625