Back to Search Start Over

MicroRNA-193b-3p alleviates focal cerebral ischemia and reperfusion-induced injury in rats by inhibiting 5-lipoxygenase expression.

Authors :
Chen Z
Yang J
Zhong J
Luo Y
Du W
Hu C
Xia H
Li Y
Zhang J
Li M
Yang Y
Huang H
Peng Z
Tan X
Wang H
Source :
Experimental neurology [Exp Neurol] 2020 May; Vol. 327, pp. 113223. Date of Electronic Publication: 2020 Feb 04.
Publication Year :
2020

Abstract

Aims: Ischemic stroke has become one of the main causes of death worldwide. MicroRNAs (miRNAs) have been implicated in cerebral ischemia-reperfusion (I/R) injury and could serve as therapeutic targets. 5-Lipoxygenase (5-LOX) is a key enzyme in the biosynthesis of leukotrienes and has been implicated in inflammatory central nerve system disorders. The objective of this study was to explore the neuroprotective effects of miR-193b-3p against focal cerebral I/R injury in rats by regulating 5-LOX expression.<br />Methods and Materials: Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion and reperfusion injury. The level of miR-193b-3p expression was observed in the rat cortical peri-infarct region after focal cerebral I/R injury. Bioinformatics analysis was used to predict the binding sites of miR-193b-3p, and a dual-luciferase reporter gene assay was applied to verify the potential interaction between 5-LOX mRNA and miR-193b-3p. Then, rats were injected with a miR-193b-3p agomir (modified and enhanced mimic) or antagomir (modified and enhanced inhibitor) in the right lateral ventricle of the brain. Neurological deficit scores, infarct volumes, neuron damage and 5-LOX enzymatic activity and expression were measured. In an in vitro experiment, cultured PC12 cells were exposed to oxygen-glucose deprivation and reperfusion (OGD/R). OGD/R-induced cells were treated with a miR-193b-3p mimic or inhibitor and 5-LOX siRNA. Cell viability, lactate dehydrogenase release, apoptosis rate and 5-LOX expression were evaluated.<br />Results: The level of miR-193b-3p expression was increased in the cortical peri-infarct region of rats with cerebral focal I/R injury. The results of the dual-luciferase reporter gene assay showed that a miR-193b-3p binding site was located in the 3' untranslated region (3'UTR) of 5-LOX mRNA. Neurological deficit scores, infarct volumes and neuronal injury were alleviated by miR-193b-3p agomir treatment but aggravated by miR-193b-3p antagomir. Furthermore, leukotriene B4, cysteinyl-leukotrienes and 5-LOX expression in the cortical peri-infarct region of rats with focal cerebral I/R injury were also downregulated by miR-193b-3p agomir treatment but upregulated by miR-193b-3p antagomir. In PC12 cells, miR-193b-3p mimic significantly decreased OGD/R-induced cell death and reduced lactate dehydrogenase release and 5-LOX expression. In contrast, miR-193b-3p inhibitor exacerbated OGD/R-induced injury in PC12 cells. Additionally, the in vitro effects of miR-193b-3p inhibitor on OGD/R-induced cell injury were partially reversed by 5-LOX siRNA treatment.<br />Conclusion: MiR-193b-3p has a potentially neuroprotective effect on focal cerebral I/R-induced injury by inhibiting 5-LOX expression.<br />Competing Interests: Declaration of Competing Interest The authors declare no competing financial interests.<br /> (Copyright © 2020 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2430
Volume :
327
Database :
MEDLINE
Journal :
Experimental neurology
Publication Type :
Academic Journal
Accession number :
32032565
Full Text :
https://doi.org/10.1016/j.expneurol.2020.113223