Back to Search Start Over

Maize extract rich in ferulic acid and anthocyanins prevents high-fat-induced obesity in mice by modulating SIRT1, AMPK and IL-6 associated metabolic and inflammatory pathways.

Authors :
Luna-Vital D
Luzardo-Ocampo I
Cuellar-Nuñez ML
Loarca-Piña G
Gonzalez de Mejia E
Source :
The Journal of nutritional biochemistry [J Nutr Biochem] 2020 May; Vol. 79, pp. 108343. Date of Electronic Publication: 2020 Jan 10.
Publication Year :
2020

Abstract

The aim was to compare the antiobesity efficacy of different concentrations of a phenolic-rich water extract from purple maize pericarp (PPE) in a murine model of obesity for 12 weeks. Forty C57BL/6 mice (n=10/group) were randomized: standard diet (SD), high-fat diet (HFD), HFD+200 mg PPE/kg (200 PPE) and HFD+500 mg PPE/kg (500 PPE). PPE contained mainly ferulic acid, anthocyanins and other phenolics (total phenolics: 448.5 μg/mg dry weight, DW). Body weight (-27.9%), blood glucose (-26.5%) and blood triglycerides (-22.1%) were most attenuated (P<.05) in 500 PPE group compared to HFD group. Also, 500 PPE group had reduced (P<.05) plasma levels of TNF-α, MCP-1, resistin and leptin compared to HFD group. Fatty liver disease scores were highest for HFD (8.4), followed by 200 PPE (6.1), 500 PPE (2.7) and SD (0.4) groups. Relative adipose tissue was lower (P<.05) in 200 PPE (7.6%), 500 PPE (8.0%) and SD (0.8%) compared to HFD (12.1%) group. In 500 PPE group, compared to HFD group, important genes were modulated related to adipogenesis (Mmp3, fold-change [FC]=7.4), inflammation (Nfkb1, FC=-1.8) and glucose metabolism (Slc2a4, FC=23.6) in adipose tissue. In liver, 500 PPE group showed modulation of genes related to gluconeogenesis (Pck1, FC=-2.9), lipogenesis (Fasn, FC=-2.4) and β-oxidation (Cpt1b, FC=3.1). Maize rich in ferulic acid and anthocyanins prevented obesity through the modulation of TLR and AMPK signaling pathways reducing adipogenesis and adipose inflammation, and promoting energy expenditure.<br />Competing Interests: Declaration of competing interest The authors declare no conflicts of interest.<br /> (Copyright © 2020 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1873-4847
Volume :
79
Database :
MEDLINE
Journal :
The Journal of nutritional biochemistry
Publication Type :
Academic Journal
Accession number :
32007662
Full Text :
https://doi.org/10.1016/j.jnutbio.2020.108343