Back to Search
Start Over
p.L571P in the linker domain of rat thyroglobulin causes intracellular retention.
- Source :
-
Molecular and cellular endocrinology [Mol Cell Endocrinol] 2020 Apr 05; Vol. 505, pp. 110719. Date of Electronic Publication: 2020 Jan 20. - Publication Year :
- 2020
-
Abstract
- Thyroglobulin (TG), a large glycosylated protein secreted by thyrocytes into the thyroid follicular lumen, plays an essential role in thyroid hormone biosynthesis. Rattus norvegicus TG (rTG) is encoded by a large single copy gene, 186-kb long, located on chromosome 7 composed of 48 exons encoding a 8461-kb mRNA. Although the TG gene displays sequence variability, many missense mutations do not impose any adverse effect on the TG protein, whereas other nucleotide substitutions may affect its TG stability and/or TG intracellular trafficking. In order to gain a further understanding of the protein domains regulating its intracellular fate, we cloned a full-length cDNA from rTG into the pcDNA6/V5-His B expression vector. However, transient expression of the cDNA in HEK293T cells showed that the encoded protein was not a wild-type molecule, as it was unable to be secreted in the culture supernatant. Sequencing analyses revealed three random mutations, which accidentally emerged during the course of cloning: c.1712T>C [p.L571P] in the linker domain (amino acid positions 360 to 604), c.2027A>G [p.Q676R] in TG type 1-6 repeat and c.2720A>G [p.Q907R] in the TG type 1-7 repeat. Expression of cDNAs encoding a combination of two mutations [p.Q676R-p.Q907R], [p.L571P-p.Q907R] or [p.L571P-p.Q676R] indicated that any TG bearing the p.L571P substitution was trapped intracellularly. Indeed, we expressed the single point mutant p.L571P and confirmed that this point mutation was sufficient to cause intracellular retention of mutant TG in HEK293T cells. Endo H analysis showed that the p.L571P mutant is completely sensitive to the enzyme, whereas the will-type TG acquires full N-glycan modifications in Golgi apparatus. This data suggest that the p.L571P mutant contains the mannose-type N-glycan, that was added at the first stage of glycosylation. Complex-type N-glycan formation in the Golgi apparatus does not occur, consistent with defective endoplasmic reticulum exit of the mutant TG. Moreover, predictive analysis of the 3D linker domain showed that the p.L571P mutation would result in a significant protein conformational change. In conclusion, our studies identified a novel amino acid residue within the linker domain of TG associated with its conformational maturation and intracellular trafficking.<br /> (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Subjects :
- Amino Acid Sequence
Animals
Base Sequence
DNA, Complementary genetics
Glycoside Hydrolases metabolism
HEK293 Cells
Humans
Male
Mutagenesis genetics
Mutant Proteins chemistry
Mutant Proteins metabolism
Protein Domains
Protein Multimerization
Protein Structure, Secondary
Rats, Wistar
Intracellular Space metabolism
Mutation genetics
Thyroglobulin chemistry
Thyroglobulin genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1872-8057
- Volume :
- 505
- Database :
- MEDLINE
- Journal :
- Molecular and cellular endocrinology
- Publication Type :
- Academic Journal
- Accession number :
- 31972331
- Full Text :
- https://doi.org/10.1016/j.mce.2020.110719